Advertisement

Computational Mechanics

, Volume 48, Issue 6, pp 647–657 | Cite as

Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics

  • Kenji Takizawa
  • Bradley Henicke
  • Darren Montes
  • Tayfun E. Tezduyar
  • Ming-Chen Hsu
  • Yuri Bazilevs
Original Paper

Abstract

We present our numerical-performance studies for 3D wind-turbine rotor aerodynamics computation with the deforming-spatial-domain/stabilized space–time (DSD/SST) formulation. The computation is challenging because of the large Reynolds numbers and rotating turbulent flows, and computing the correct torque requires an accurate and meticulous numerical approach. As the test case, we use the NREL 5MW offshore baseline wind-turbine rotor. We compute the problem with both the original version of the DSD/SST formulation and the version with an advanced turbulence model. The DSD/SST formulation with the turbulence model is a recently-introduced space–time version of the residual-based variational multiscale method. We include in our comparison as reference solution the results obtained with the residual-based variational multiscale Arbitrary Lagrangian–Eulerian method using NURBS for spatial discretization. We test different levels of mesh refinement and different definitions for the stabilization parameter embedded in the “least squares on incompressibility constraint” stabilization. We compare the torque values obtained.

Keywords

DSD/SST formulation Space–time variational multiscale method Wind-turbine aerodynamics Rotating turbulent flow Torque values 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011) 3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics. Int J Numer Methods Fluids 65: 207–235. doi: 10.1002/fld.2400 zbMATHCrossRefGoogle Scholar
  2. 2.
    Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades. Int J Numer Methods Fluids 65: 236–253zbMATHCrossRefGoogle Scholar
  3. 3.
    Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194: 4135–4195MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28: 1–44. doi: 10.1016/S0065-2156(08)70153-4 MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space–time procedure: I The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94: 339–351. doi: 10.1016/0045-7825(92)90059-S MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94: 353–371. doi: 10.1016/0045-7825(92)90060-W MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575. doi: 10.1002/fld.505 MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54: 855–900. doi: 10.1002/fld.1430 MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Takizawa K, Tezduyar TE, Multiscale space–time fluid–structure interaction techniques. Comput Mech. doi: 10.1007/s00466-011-0571-z, February 2011, doi: 10.1007/s00466-011-0571-z
  10. 10.
    Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput Methods Appl Mech Eng 127: 387–401zbMATHCrossRefGoogle Scholar
  11. 11.
    Hughes TJR, Oberai AA, Mazzei L (2001) Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys Fluids 13: 1784–1799CrossRefGoogle Scholar
  12. 12.
    Bazilevs Y, Calo VM, Cottrel JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197: 173–201zbMATHCrossRefGoogle Scholar
  13. 13.
    Bazilevs Y, Akkerman I (2010) Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual–based variational multiscale method. J Comput Phys 229: 3402–3414MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Takizawa K, Henicke B, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Stabilized space–time computation of wind-turbine rotor aerodynamics. Comput Mech. doi: 10.1007/s00466-011-0589-2, March 2011, doi: 10.1007/s00466-011-0589-2
  15. 15.
    Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29: 329–349MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26: 27–36. doi: 10.1109/2.237441 CrossRefGoogle Scholar
  17. 17.
    Behr M, Johnson A, Kennedy J, Mittal S, Tezduyar T (1993) Computation of incompressible flows with implicit finite element implementations on the connection machine. Comput Methods Appl Mech Eng 108: 99–118. doi: 10.1016/0045-7825(93)90155-Q MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Tezduyar TE, Aliabadi SK, Behr M, Mittal S (1994) Massively parallel finite element simulation of compressible and incompressible flows. Comput Methods Appl Mech Eng 119: 157–177. doi: 10.1016/0045-7825(94)00082-4 zbMATHCrossRefGoogle Scholar
  19. 19.
    Mittal S, Tezduyar TE (1994) Massively parallel finite element computation of incompressible flows involving fluid-body interactions. Comput Methods Appl Mech Eng 112: 253–282. doi: 10.1016/0045-7825(94)90029-9 MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows—fluid–structure interactions. Int J Numer Methods Fluids 21: 933–953. doi: 10.1002/fld.1650211011 zbMATHCrossRefGoogle Scholar
  21. 21.
    Aliabadi SK, Tezduyar TE (1995) Parallel fluid dynamics computations in aerospace applications. Int J Numer Methods Fluids 21: 783–805. doi: 10.1002/fld.1650211003 MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and high performance computing. Comput Mech 18: 397–412. doi: 10.1007/BF00350249 zbMATHCrossRefGoogle Scholar
  23. 23.
    Johnson AA, Tezduyar TE (1997) Parallel computation of incompressible flows with complex geometries. Int J Numer Methods Fluids 24:1321–1340. doi: 10.1002/(SICI)1097-0363(199706)24:12<1321::AID-FLD562>3.3.CO;2-C
  24. 24.
    Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23: 130–143. doi: 10.1007/s004660050393 zbMATHCrossRefGoogle Scholar
  25. 25.
    Behr M, Tezduyar T (1999) The shear-slip mesh update method. Comput Methods Appl Mech Eng 174: 261–274. doi: 10.1016/S0045-7825(98)00299-0 zbMATHCrossRefGoogle Scholar
  26. 26.
    Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Eng 190: 321–332. doi: 10.1016/S0045-7825(00)00204-8 zbMATHCrossRefGoogle Scholar
  27. 27.
    Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J, Accorsi M (2000) Parachute fluid–structure interactions: 3-D computation. Comput Methods Appl Mech Eng 190: 373–386. doi: 10.1016/S0045-7825(00)00208-5 zbMATHCrossRefGoogle Scholar
  28. 28.
    Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8: 83–130. doi: 10.1007/BF02897870 zbMATHCrossRefGoogle Scholar
  29. 29.
    Tezduyar T, Osawa Y (2001) Fluid–structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191:717–726. doi: 10.1016/S0045-7825(01)00311-5 Google Scholar
  30. 30.
    Stein K, Benney R, Tezduyar T, Potvin J (2001) Fluid–structure interactions of a cross parachute: numerical simulation. Comput Methods Appl Mech Eng 191: 673–687. doi: 10.1016/S0045-7825(01)00312-7 zbMATHCrossRefGoogle Scholar
  31. 31.
    Ohayon R (2001) Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems. Comput Methods Appl Mech Eng 190: 3009–3019zbMATHCrossRefGoogle Scholar
  32. 32.
    Behr M, Tezduyar T (2001) Shear-slip mesh update in 3D computation of complex flow problems with rotating mechanical components. Comput Methods Appl Mech Eng 190: 3189–3200. doi: 10.1016/S0045-7825(00)00388-1 zbMATHCrossRefGoogle Scholar
  33. 33.
    Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70: 58–63. doi: 10.1115/1.1530635 zbMATHCrossRefGoogle Scholar
  34. 34.
    Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193: 2019–2032. doi: 10.1016/j.cma.2003.12.046 zbMATHCrossRefGoogle Scholar
  35. 35.
    van Brummelen EH, de Borst R (2005) On the nonnormality of subiteration for a fluid–structure interaction problem. SIAM J Scientific Comput 27: 599–621MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195: 2002–2027. doi: 10.1016/j.cma.2004.09.014 MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid– structure interactions with the space–time formulations. Comput Methods Appl Mech Eng 195: 5743–5753. doi: 10.1016/j.cma.2005.08.023 MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized space–time formulation. Comput Methods Appl Mech Eng 195: 1885–1895. doi: 10.1016/j.cma.2005.05.050 MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38: 482–490. doi: 10.1007/s00466-006-0065-6 zbMATHCrossRefGoogle Scholar
  40. 40.
    Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Khurram RA, Masud A (2006) A multiscale/stabilized formulation of the incompressible Navier–Stokes equations for moving boundary flows and fluid–structure interaction. Comput Mech 38: 403–416zbMATHCrossRefGoogle Scholar
  42. 42.
    Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36: 191–206. doi: 10.1016/j.compfluid.2005.02.011 MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics. Int J Numer Methods Fluids 54: 901–922. doi: 10.1002/fld.1443 MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Influence of wall elasticity in patient-specific hemodynamic simulations. Comput Fluids 36: 160–168. doi: 10.1016/j.compfluid.2005.07.014 zbMATHCrossRefGoogle Scholar
  45. 45.
    Sawada T, Hisada T (2007) Fluid–structure interaction analysis of the two dimensional flag-in-wind problem by an interface tracking ALE finite element method. Comput Fluids 36: 136–146zbMATHCrossRefGoogle Scholar
  46. 46.
    Takizawa K, Yabe T, Tsugawa Y, Tezduyar TE, Mizoe H (2007) Computation of free–surface flows and fluid–object interactions with the CIP method based on adaptive meshless Soroban grids. Comput Mech 40: 167–183. doi: 10.1007/s00466-006-0093-2 zbMATHCrossRefGoogle Scholar
  47. 47.
    Takizawa K, Tanizawa K, Yabe T, Tezduyar TE (2007) Ship hydrodynamics computations with the CIP method based on adaptive Soroban grids. Int J Numer Methods Fluids 54: 1011–1019. doi: 10.1002/fld.1466 zbMATHCrossRefGoogle Scholar
  48. 48.
    Yabe T, Takizawa K, Tezduyar TE, Im H-N (2007) Computation of fluid–solid and fluid–fluid interfaces with the CIP method based on adaptive Soroban grids—an overview. Int J Numer Methods Fluids 54: 841–853. doi: 10.1002/fld.1473 MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—dependence of the effect on the aneurysm shape. Int J Numer Methods Fluids 54: 995–1009. doi: 10.1002/fld.1497 MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Manguoglu M, Sameh AH, Tezduyar TE, Sathe S (2008) A nested iterative scheme for computation of incompressible flows in long domains. Comput Mech 43: 73–80. doi: 10.1007/s00466-008-0276-0 MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid– structure interaction modeling with moving-mesh methods. Comput Mech 43: 39–49. doi: 10.1007/s00466-008-0261-7 zbMATHCrossRefGoogle Scholar
  52. 52.
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Fluid–structure interaction modeling of ringsail parachutes. Comput Mech 43: 133–142. doi: 10.1007/s00466-008-0260-8 zbMATHCrossRefGoogle Scholar
  53. 53.
    Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2008) Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique. Int J Numer Methods Fluids 57: 601–629. doi: 10.1002/fld.1633 MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Sathe S, Tezduyar TE (2008) Modeling of fluid–structure interactions with the space–time finite elements: contact problems. Comput Mech 43: 51–60. doi: 10.1007/s00466-008-0299-6 MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43: 151–159. doi: 10.1007/s00466-008-0325-8 zbMATHCrossRefGoogle Scholar
  56. 56.
    Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43: 3–37MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Isaksen JG, Bazilevs Y, Kvamsdal T, Zhang Y, Kaspersen JH, Waterloo K, Romner B, Ingebrigtsen T (2008) Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39: 3172–3178CrossRefGoogle Scholar
  58. 58.
    Dettmer WG, Peric D (2008) On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction. Comput Mech 43: 81–90zbMATHCrossRefGoogle Scholar
  59. 59.
    Bazilevs Y, Hughes TJR (2008) NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43: 143–150MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Tezduyar TE, Schwaab M, Sathe S (2009) Sequentially-coupled arterial fluid–structure interaction (SCAFSI) technique. Comput Methods Appl Mech Eng 198: 3524–3533. doi: 10.1016/j.cma.2008.05.024 MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2009) Fluid–structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Comput Methods Appl Mech Eng 198: 3613–3621. doi: 10.1016/j.cma.2008.08.020 MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Manguoglu M, Sameh AH, Saied F, Tezduyar TE, Sathe S (2009) Preconditioning techniques for nonsymmetric linear systems in computation of incompressible flows. J Appl Mech 76: 021204. doi: 10.1115/1.3059576 CrossRefGoogle Scholar
  63. 63.
    Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198: 3534–3550MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45: 77–89MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space–time finite element computation of arterial fluid–structure interactions with patient-specific data. Int J Numer Methods Biomed Eng 26: 101–116. doi: 10.1002/cnm.1241 zbMATHCrossRefGoogle Scholar
  66. 66.
    Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Comput Mech 46: 31–41. doi: 10.1007/s00466-009-0425-0 MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46: 17–29. doi: 10.1007/s00466-009-0423-2 MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms. Int J Numer Methods Biomed Eng 26: 336–347. doi: 10.1002/cnm.1289 MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2010) Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Comput Mech 46: 83–89. doi: 10.1007/s00466-009-0426-z zbMATHCrossRefGoogle Scholar
  70. 70.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms. Comput Mech 46: 43–52. doi: 10.1007/s00466-009-0439-7 zbMATHCrossRefGoogle Scholar
  71. 71.
    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 46: 3–16MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space–time finite element computation of complex fluid–structure interactions. Int J Numer Methods Fluids 64: 1201–1218. doi: 10.1002/fld.2221 zbMATHCrossRefGoogle Scholar
  73. 73.
    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9: 481–498CrossRefGoogle Scholar
  74. 74.
    Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199: 2403–2416CrossRefGoogle Scholar
  75. 75.
    Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes. Int J Numer Methods Fluids 65: 271–285. doi: 10.1002/fld.2348 zbMATHCrossRefGoogle Scholar
  76. 76.
    Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2011) Patient-specific arterial fluid–structure interaction modeling of cerebral aneurysms. Int J Numer Methods Fluids 65: 308–323. doi: 10.1002/fld.2360 zbMATHCrossRefGoogle Scholar
  77. 77.
    Takizawa K, Wright S, Moorman C, Tezduyar TE (2011) Fluid–structure interaction modeling of parachute clusters. Int J Numer Methods Fluids 65: 286–307. doi: 10.1002/fld.2359 zbMATHCrossRefGoogle Scholar
  78. 78.
    Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement. Int J Numer Methods Fluids 65: 135–149. doi: 10.1002/fld.2415 MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space–time fluid–structure interaction modeling of patient-specific cerebral aneurysms. Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.1433
  80. 80.
    Takizawa K, Spielman T, Tezduyar TE (2011) Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput. Mech. doi: 10.1007/s00466-011-0590-9
  81. 81.
    Takizawa K, Spielman T, Moorman C, Tezduyar TE (2011) Fluid–structure interaction modeling of spacecraft parachutes for simulation-based design. J Appl Mech (to appear)Google Scholar
  82. 82.
    Takizawa K, Brummer T, Tezduyar TE, Chen PR (2011) A comparative study based on patient-specific fluid–structure interaction modeling of cerebral aneurysms. J Appl Mech (to appear)Google Scholar
  83. 83.
    Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2011) Space–time computational techniques for the aerodynamics of flapping wings. J Appl Mech (to appear)Google Scholar
  84. 84.
    Tezduyar T, Aliabadi S, Behr M (1998) Enhanced-discretization interface-capturing technique (EDICT) for computation of unsteady flows with interfaces. Comput Methods Appl Mech Eng 155: 235–248. doi: 10.1016/S0045-7825(97)00194-1 zbMATHCrossRefGoogle Scholar
  85. 85.
    Akin JE, Tezduyar TE, Ungor M (2007) Computation of flow problems with the mixed interface-tracking/interface-capturing technique (MITICT). Comput Fluids 36: 2–11. doi: 10.1016/j.compfluid.2005.07.008 zbMATHCrossRefGoogle Scholar
  86. 86.
    Cruchaga MA, Celentano DJ, Tezduyar TE (2007) A numerical model based on the mixed interface-tracking/interface-capturing technique (mitict) for flows with fluid–solid and fluid–fluid interfaces. Int J Numer Methods Fluids 54: 1021–1030. doi: 10.1002/fld.1498 zbMATHCrossRefGoogle Scholar
  87. 87.
    Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov- Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32: 199–259MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity–pressure elements. Comput Methods Appl Mech Eng 95: 221–242. doi: 10.1016/0045-7825(92)90141-6 zbMATHCrossRefGoogle Scholar
  89. 89.
    Tezduyar TE, Park YJ (1986) Discontinuity capturing finite element formulations for nonlinear convection–diffusion–reaction equations. Comput Methods Appl Mech Eng 59: 307–325. doi: 10.1016/0045-7825(86)90003-4 zbMATHCrossRefGoogle Scholar
  90. 90.
    Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190: 411–430. doi: 10.1016/S0045-7825(00)00211-5 zbMATHCrossRefGoogle Scholar
  91. 91.
    Akin JE, Tezduyar T, Ungor M, Mittal S (2003) Stabilization parameters and Smagorinsky turbulence model. J Appl Mech 70: 2–9. doi: 10.1115/1.1526569 zbMATHCrossRefGoogle Scholar
  92. 92.
    Akin JE, Tezduyar TE (1922) Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements. Comput Methods Appl Mech Eng 193: 1909–1922. doi: 10.1016/j.cma.2003.12.050 CrossRefGoogle Scholar
  93. 93.
    Catabriga L, Coutinho ALGA, Tezduyar TE (2005) Compressible flow SUPG parameters computed from element matrices. Commun Numer Methods Eng 21: 465–476. doi: 10.1002/cnm.759 MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Corsini A, Rispoli F, Santoriello A, Tezduyar TE (2006) Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation. Comput Mech 38: 356–364. doi: 10.1007/s00466-006-0045-x MathSciNetzbMATHCrossRefGoogle Scholar
  95. 95.
    Catabriga L, Coutinho ALGA, Tezduyar TE (2006) Compressible flow SUPG parameters computed from degree-of-freedom submatrices. Comput Mech 38: 334–343. doi: 10.1007/s00466-006-0033-1 zbMATHCrossRefGoogle Scholar
  96. 96.
    Rispoli F, Corsini A, Tezduyar TE (2007) Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD). Comput Fluids 36: 121–126. doi: 10.1016/j.compfluid.2005.07.004 zbMATHCrossRefGoogle Scholar
  97. 97.
    Catabriga L, de Souza DAF, Coutinho ALGA, Tezduyar TE (2009) Three-dimensional edge-based SUPG computation of inviscid compressible flows with YZβ shock-capturing. J Appl Mech 76: 021208. doi: 10.1115/1.3062968 CrossRefGoogle Scholar
  98. 98.
    Corsini A, Iossa C, Rispoli F, Tezduyar TE (2010) A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors. Comput Mech 46: 159–167. doi: 10.1007/s00466-009-0441-0 MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199: 828–840. doi: 10.1016/j.cma.2009.06.019 MathSciNetzbMATHCrossRefGoogle Scholar
  100. 100.
    Corsini A, Rispoli F, Tezduyar TE (2011) Stabilized finite element computation of NOx emission in aero-engine combustors. Int J Numer Methods Fluids 65: 254–270. doi: 10.1002/fld.2451 MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development. Technical Report NREL/TP-500-38060, National Renewable Energy Laboratory (2009)Google Scholar
  102. 102.
    Spera DA (1994) Introduction to modern wind turbines. In: Spera DA (eds) Wind turbine technology: fundamental concepts of wind turbine engineering. ASME Press, New Jersey, pp 47–72Google Scholar
  103. 103.
    Saad Y, Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Scientific Statist Comput 7: 856–869MathSciNetzbMATHCrossRefGoogle Scholar
  104. 104.
    Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Scientific Comput 20: 359–392MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Kenji Takizawa
    • 1
  • Bradley Henicke
    • 2
  • Darren Montes
    • 2
  • Tayfun E. Tezduyar
    • 2
  • Ming-Chen Hsu
    • 3
  • Yuri Bazilevs
    • 3
  1. 1.Department of Modern Mechanical Engineering and Waseda Institute for Advanced StudyWaseda UniversityTokyoJapan
  2. 2.Mechanical EngineeringRice UniversityHoustonUSA
  3. 3.Structural EngineeringUniversity of California, San DiegoLa JollaUSA

Personalised recommendations