Computational Mechanics

, Volume 48, Issue 4, pp 437–449 | Cite as

Transient 3d contact problems—NTS method: mixed methods and conserving integration

Open Access
Original Paper

Abstract

The present work deals with a new formulation for transient large deformation contact problems. It is well known, that one-step implicit time integration schemes for highly non-linear systems fail to conserve the total energy of the system. To deal with this drawback, a mixed method is newly proposed in conjunction with the concept of a discrete gradient. In particular, we reformulate the well known and widely-used node-to-segment methods and establish an energy-momentum scheme. The advocated approach ensures robustness and enhanced numerical stability, demonstrated in several three-dimensional applications of the proposed algorithm.

Keywords

Contact Energy methods Large deformation 

References

  1. 1.
    Armero F, Petöcz E (1998) Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Comput Methods Appl Mech Eng 158: 269–300MATHCrossRefGoogle Scholar
  2. 2.
    Armero F, Romero I (2001) On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part I: low-order methods for two model problems and nonlinear elastodynamics. Comput Methods Appl Mech Eng 190: 2603–2649MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Armero F, Romero I (2001) On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part II: second-order methods. Comput Methods Appl Mech Eng 190: 6783–6824MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Benson DJ, Hallquist JO (1990) A single surface contact algorithm for the post-buckling analysis of shell structures. Comput Methods Appl Mech Eng 78: 141–163MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Betsch P, Hesch C (2007) Energy-momentum conserving schemes for frictionless dynamic contact problems. Part I: NTS method. In: Wriggers P, Nackenhorst U. (eds) IUTAM symposium on computational methods in contact mechanics, vol 3 of IUTAM Bookseries. Springer, Berlin, pp 77–96CrossRefGoogle Scholar
  6. 6.
    Betsch P, Steinmann P (2000) Conserving properties of a time FE method—part I: time-stepping schemes for n-body problems. Int J Numer Methods Eng 49: 599–638MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Betsch P, Steinmann P (2001) Conserving properties of a time FE method—part II: time-stepping schemes for non-linear elastodynamics. Int J Numer Methods Eng 50: 1931–1955MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Betsch P, Steinmann P (2002) Conservation properties of a time FE method. Part III: mechanical systems with holonomic constraints. Int J Numer Methods Eng 53: 2271–2304MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Betsch P, Uhlar S (2007) Energy-momentum conserving integration of multibody dynamics. Multibody Syst Dyn 17(4): 243–289MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Gonzalez O (1996) Time integration and discrete Hamiltonian systems. J Nonlinear Sci 6: 449–467MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Gonzalez O (1999) Mechanical systems subject to holonomic constraints: Differential - algebraic formulations and conservative integration. Physica D 132: 165–174MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Gonzalez O (2000) Exact energy and momentum conserving algorithms for general models in nonlinear elasticity. Comput Methods Appl Mech Eng 190: 1763–1783MATHCrossRefGoogle Scholar
  13. 13.
    Haikal G, Hjelmstad KD (2007) A finite element formulation of non-smooth contact based on oriented volumes for quadrilateral and hexahedral elements. Comput Methods Appl Mech Eng 196: 4690–4711MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Hallquist JO (1979) Nike2d. Technical Report UCRL-52678. University of California, Lawrence Livermore National LaboratoryGoogle Scholar
  15. 15.
    Hauret P, LeTallec P (2006) Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact. Comput Methods Appl Mech Eng 195: 4890–4916MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Hesch C, Betsch P (2009) A mortar method for energy-momentum conserving schemes in frictionless dynamic contact problems. Int J Numer Methods Eng 77: 1468–1500MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Hesch C, Betsch P (2010) Transient 3d domain decomposition problems: frame-indifferent mortar constraints and conserving integration. Int J Numer Methods Eng 82: 329–358MathSciNetMATHGoogle Scholar
  18. 18.
    Hüeber S, Wohlmuth BI (2005) A primal-dual active set strategy for non-linear multibody contact problems. Comput Methods Appl Mech Eng 194: 3147–3166MATHCrossRefGoogle Scholar
  19. 19.
    Hüeber S, Wohlmuth BI (2006) Mortar methods for contact problems. In: Wriggers P, Nackenhorst U (eds) Analysis and simulation of contact problems. Lecture notes in applied and computational mechanics. vol 27. Springer, Berlin, pp 39–47Google Scholar
  20. 20.
    Hughes TJR (2000) The finite element method. Dover Publications, New YorkMATHGoogle Scholar
  21. 21.
    Konyukhov A, Schweizerhof K (2005) Covariant description for frictional contact problems. Comput Methods Appl Mech Eng 35: 190–213MATHGoogle Scholar
  22. 22.
    Konyukhov A, Schweizerhof K (2006) Covariant description of contact interfaces considering anisotropy for adhesion and friction: Part 1. Formulation and analysis of the computational model. Comput Methods Appl Mech Eng 196: 103–117MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Laursen TA (1992) Formulation and treatment of frictional contact problems using finite elements, PhD thesis. Stanford UniversityGoogle Scholar
  24. 24.
    Laursen TA (2002) Computational contact and impact mechanics. Springer, BerlinMATHGoogle Scholar
  25. 25.
    Laursen TA, Chawla V (1997) Design of energy conserving algorithms for frictionless dynamic contact problems. Int J Numer Methods Eng 40: 863–886MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Laursen TA, Love GR (2002) Improved implicit integrators for transient impact problems – geometric admissibility within the conserving framework. Int J Numer Methods Eng 53: 245–274MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Puso MA, Laursen TA, Solberg JM (2008) A segment-to-segment mortar contact method for quadratic elements and large deformations. Comput Methods Appl Mech Eng 197: 555–566MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Simo JC, Tarnow N (1992) The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Z Angew Math Phys 43: 757–792MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Simo JC, Tarnow N, Wong KK (1992) Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Comput Methods Appl Mech Eng 100: 63–116MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Tur M, Fuenmayor FJ, Wriggers P (2009) A mortar-based frictional contact formulation for large deformations using Lagrange multipliers. Comput Methods Appl Mech Eng 198: 2860–2873MathSciNetCrossRefGoogle Scholar
  31. 31.
    Wriggers P (2006) Computational contact mechanics, 2nd edn. Springer, BerlinMATHCrossRefGoogle Scholar
  32. 32.
    Wriggers P, Van TV, Stein E (1990) Finite element formulations of large deformation impact-contact problems with friction. Comput Struct 37: 319–331MATHCrossRefGoogle Scholar
  33. 33.
    Yang B, Laursen TA (2008) A contact searching algorithm including bounding volume trees applied to finite sliding mortar formulation. Comput Mech 41: 189–205MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Yang B, Laursen TA (2008) A large deformation mortar formulation of self contact with finite sliding. Comput Methods Appl Mech Eng 197: 756–772MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics, 6th edn. Butterworth Heinemann, LondonMATHGoogle Scholar
  36. 36.
    Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method. Its basis and fundamentals, 6th edn. Butterworth Heinemann, LondonGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Chair of Computational Mechanics, Department of Mechanical EngineeringUniversity of SiegenSiegenGermany

Personalised recommendations