Advertisement

Computational Mechanics

, 48:345 | Cite as

Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters

  • Kenji Takizawa
  • Timothy Spielman
  • Tayfun E. Tezduyar
Original Paper

Abstract

Computer modeling of spacecraft parachutes, which are quite often used in clusters of two or three large parachutes, involves fluid–structure interaction (FSI) between the parachute canopy and the air, geometric complexities created by the construction of the parachute from “rings” and “sails” with hundreds of gaps and slits, and the contact between the parachutes. The Team for Advanced Flow Simulation and Modeling \({({{\rm T} \bigstar {\rm AFSM}})}\) has successfully addressed the computational challenges related to the FSI and geometric complexities, and recently started addressing the challenges related to the contact between the parachutes of a cluster. The core numerical technology is the stabilized space–time FSI technique developed and improved over the years by the \({{{\rm T} \bigstar {\rm AFSM}}}\) . The special technique used in dealing with the geometric complexities is the Homogenized Modeling of Geometric Porosity, which was also developed and improved in recent years by the \({{{\rm T} \bigstar {\rm AFSM}}}\) . In this paper we describe the technique developed by the \({{{\rm T} \bigstar {\rm AFSM}}}\) for modeling, in the context of an FSI problem, the contact between two structural surfaces. We show how we use this technique in dealing with the contact between parachutes. We present the results obtained with the FSI computation of parachute clusters, the related dynamical analysis, and a special decomposition technique for parachute descent speed to make that analysis more informative. We also present a special technique for extracting from a parachute FSI computation model parameters, such as added mass, that can be used in fast, approximate engineering analysis models for parachute dynamics.

Keywords

Fluid–structure interaction Spacecraft parachutes Parachute clusters Ringsail parachute Space–time technique Geometric porosity Contact 

References

  1. 1.
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid– structure interaction modeling with moving-mesh methods. Comput Mech 43: 39–49zbMATHCrossRefGoogle Scholar
  2. 2.
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Fluid–structure interaction modeling of ringsail parachutes. Comput Mech 43: 133–142zbMATHCrossRefGoogle Scholar
  3. 3.
    Takizawa K, Wright S, Moorman C, Tezduyar TE (2011) Fluid–structure interaction modeling of parachute clusters. Int J Numer Methods Fluids 65: 286–307zbMATHCrossRefGoogle Scholar
  4. 4.
    Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29: 329–349MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26: 27–36CrossRefGoogle Scholar
  6. 6.
    Tezduyar TE, Aliabadi SK, Behr M, Mittal S (1994) Massively parallel finite element simulation of compressible and incompressible flows. Comput Methods Appl Mech Eng 119: 157–177zbMATHCrossRefGoogle Scholar
  7. 7.
    Mittal S, Tezduyar TE (1994) Massively parallel finite element computation of incompressible flows involving fluid-body interactions. Comput Methods Appl Mech Eng 112: 253–282MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows—fluid–structure interactions. Int J Numer Methods Fluids 21: 933–953zbMATHCrossRefGoogle Scholar
  9. 9.
    Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and high performance computing. Comput Mech 18: 397–412zbMATHCrossRefGoogle Scholar
  10. 10.
    Johnson AA, Tezduyar TE (1997) Parallel computation of incompressible flows with complex geometries. Int J Numer Methods Fluids 24: 1321–1340zbMATHCrossRefGoogle Scholar
  11. 11.
    Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23: 130–143zbMATHCrossRefGoogle Scholar
  12. 12.
    Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Eng 190: 321–332zbMATHCrossRefGoogle Scholar
  13. 13.
    Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J, Accorsi M (2000) Parachute fluid–structure interactions: 3-D computation. Comput Methods Appl Mech Eng 190: 373–386zbMATHCrossRefGoogle Scholar
  14. 14.
    Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8: 83–130zbMATHCrossRefGoogle Scholar
  15. 15.
    Tezduyar T, Osawa Y (2001) Fluid–structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191: 717–726zbMATHCrossRefGoogle Scholar
  16. 16.
    Ohayon R (2001) Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems. Comput Methods Appl Mech Eng 190: 3009–3019zbMATHCrossRefGoogle Scholar
  17. 17.
    Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70: 58–63zbMATHCrossRefGoogle Scholar
  18. 18.
    Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193: 2019–2032zbMATHCrossRefGoogle Scholar
  19. 19.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE. (2004) of wall elasticity on image-based blood flow simulation. Jpn Soc Mech Eng J Ser A 70: 1224–1231 (in Japanese)Google Scholar
  20. 20.
    Tezduyar TE, Sathe S, Keedy R, Stein K (2004) Space–time techniques for finite element computation of flows with moving boundaries and interfaces. In: Gallegos S, Herrera I, Botello S, Zarate F, Ayala G (eds) Proceedings of the III international congress on numerical methods in engineering and applied science, CD-ROM, MonterreyGoogle Scholar
  21. 21.
    van Brummelen EH, de Borst R (2005) On the nonnormality of subiteration for a fluid-structure interaction problem. SIAM J Sci Comput 27: 599–621MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195: 2002–2027MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Methods Appl Mech Eng 195: 5743–5753MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized space–time formulation. Comput Methods Appl Mech Eng 195: 1885–1895MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38: 482–490zbMATHCrossRefGoogle Scholar
  26. 26.
    Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Khurram RA, Masud A (2006) A multiscale/stabilized formulation of the incompressible Navier–Stokes equations for moving boundary flows and fluid–structure interaction. Comput Mech 38: 403–416zbMATHCrossRefGoogle Scholar
  28. 28.
    Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space–time finite elements: arterial fluid mechanics. Int J Numer Methods Fluids 54: 901–922MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Influence of wall elasticity in patient-specific hemodynamic simulations. Comput Fluids 36: 160–168zbMATHCrossRefGoogle Scholar
  30. 30.
    Sawada T, Hisada T (2007) Fuid–structure interaction analysis of the two dimensional flag-in-wind problem by an interface tracking ALE finite element method. Comput Fluids 36: 136–146zbMATHCrossRefGoogle Scholar
  31. 31.
    Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54: 855–900MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—dependence of the effect on the aneurysm shape. Int J Numer Methods Fluids 54: 995–1009MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Manguoglu M, Sameh AH, Tezduyar TE, Sathe S (2008) A nested iterative scheme for computation of incompressible flows in long domains. Comput Mech 43: 73–80MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2008) Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique. Int J Numer Methods Fluids 57: 601–629MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43: 151–159zbMATHCrossRefGoogle Scholar
  36. 36.
    Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43: 3–37MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Isaksen JG, Bazilevs Y, Kvamsdal T, Zhang Y, Kaspersen JH, Waterloo K, Romner B, Ingebrigtsen T (2008) Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39: 3172–3178CrossRefGoogle Scholar
  38. 38.
    Kuttler U, Wall WA (2008) Fixed-point fluid–structure interaction solvers with dynamic relaxation. Comput Mech 43: 61–72CrossRefGoogle Scholar
  39. 39.
    Dettmer WG, Peric D (2008) On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction. Comput Mech 43: 81–90zbMATHCrossRefGoogle Scholar
  40. 40.
    Tezduyar TE, Schwaab M, Sathe S (2009) Sequentially-coupled arterial fluid–structure interaction (SCAFSI) technique. Comput Methods Appl Mech Eng 198: 3524–3533MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2009) Fluid–structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes. Comput Methods Appl Mech Eng 198: 3613–3621MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Manguoglu M, Sameh AH, Saied F, Tezduyar TE, Sathe S (2009) Preconditioning techniques for nonsymmetric linear systems in computation of incompressible flows. J Appl Mech 76: 021204CrossRefGoogle Scholar
  43. 43.
    Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198: 3534–3550MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45: 77–89MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space–time finite element computation of arterial fluid–structure interactions with patient-specific data. Int J Numer Methods Biomed Eng 26: 101–116zbMATHCrossRefGoogle Scholar
  46. 46.
    Tezduyar TE, Takizawa K, Christopher J (2009) Multiscale Sequentially-coupled arterial fluid–structure interaction (SCAFSI) technique. In: Hartmann S, Meister A, Schaefer M, Turek S (eds) International workshop on fluid–structure interaction—theory, numerics and applications. Kassel University Press, Kassel, pp 231–252Google Scholar
  47. 47.
    Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Comput Mech 46: 31–41MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46: 17–29MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms. Int J Numer Methods Biomed Eng 26: 336–347MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2010) Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Comput Mech 46: 83–89zbMATHCrossRefGoogle Scholar
  51. 51.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Role of 0D peripheral vasculature model in fluid– structure interaction modeling of aneurysms. Comput Mech 46: 43– 52zbMATHCrossRefGoogle Scholar
  52. 52.
    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 46: 3–16MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space–time finite element computation of complex fluid–structure interactions. Int J Numer Methods Fluids 64: 1201–1218zbMATHCrossRefGoogle Scholar
  54. 54.
    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9: 481–498CrossRefGoogle Scholar
  55. 55.
    Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011) 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int J Numer Methods Fluids 65: 207–235zbMATHCrossRefGoogle Scholar
  56. 56.
    Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades. Int J Numer Methods Fluids 65: 236–253zbMATHCrossRefGoogle Scholar
  57. 57.
    Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes. Int J Numer Methods Fluids 65: 271–285zbMATHCrossRefGoogle Scholar
  58. 58.
    Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement. Int J Numer Methods Fluids 65: 135–149MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space–time fluid–structure interaction modeling of patient-specific cerebral aneurysms. Int J Numer Methods Biomed Eng (published online, February 2011). doi: 10.1002/cnm.1433
  60. 60.
    Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mech (published online, February 2011). doi: 10.1007/s00466-011-0571-z
  61. 61.
    Stein K, Benney R, Tezduyar T, Potvin J (2001) Fluid–structure interactions of a cross parachute: numerical simulation. Comput Methods Appl Mech Eng 191: 673–687zbMATHCrossRefGoogle Scholar
  62. 62.
    Stein KR, Benney RJ, Tezduyar TE, Leonard JW, Accorsi ML (2001) Fluid–structure interactions of a round parachute: modeling and simulation techniques. J Aircr 38: 800–808CrossRefGoogle Scholar
  63. 63.
    Stein K, Tezduyar T, Kumar V, Sathe S, Benney R, Thornburg E, Kyle C, Nonoshita T (2003) Aerodynamic interactions between parachute canopies. J Appl Mech 70: 50–57zbMATHCrossRefGoogle Scholar
  64. 64.
    Stein K, Tezduyar T, Benney R (2003) Computational methods for modeling parachute systems. Comput Sci Eng 5: 39–46CrossRefGoogle Scholar
  65. 65.
    Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28: 1–44MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94: 339–351MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Tezduyar TE, Behr M, Mittal S, Liou J. (1992) A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94: 353–371MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32: 199–259MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95: 221–242zbMATHCrossRefGoogle Scholar
  71. 71.
    Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods— space–time formulations, iterative strategies and massively parallel implementations. In: New methods in transient analysis, PVP-vol 246/AMD-vol 143. ASME, New York, pp 7–24Google Scholar
  72. 72.
    Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119: 73–94zbMATHCrossRefGoogle Scholar
  73. 73.
    Sathe S, Tezduyar TE (2008) Modeling of fluid–structure interactions with the space–time finite elements: contact problems. Comput Mech 43: 51–60MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Hilber HM, Hughes TJR, Taylor RL (1977) Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq Eng Struct Dyn 5: 283–292CrossRefGoogle Scholar
  75. 75.
    Moorman CJ (2010) Fluid–structure interaction modeling of the orion spacecraft parachutes, Ph.D. thesis. Rice UniversityGoogle Scholar
  76. 76.
    Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20: 359–392MathSciNetCrossRefGoogle Scholar
  77. 77.
    Saad Y, Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7: 856–869MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Kenji Takizawa
    • 1
  • Timothy Spielman
    • 2
  • Tayfun E. Tezduyar
    • 2
  1. 1.Department of Modern Mechanical Engineering, Waseda Institute for Advanced StudyWaseda UniversityShinjuku-ku, TokyoJapan
  2. 2.Mechanical EngineeringRice UniversityHoustonUSA

Personalised recommendations