Advertisement

Computational Mechanics

, Volume 48, Issue 3, pp 333–344 | Cite as

Stabilized space–time computation of wind-turbine rotor aerodynamics

  • Kenji Takizawa
  • Bradley Henicke
  • Tayfun E. Tezduyar
  • Ming-Chen Hsu
  • Yuri Bazilevs
Original Paper

Abstract

We show how we use the Deforming-Spatial-Domain/Stabilized Space–Time (DSD/SST) formulation for accurate 3D computation of the aerodynamics of a wind-turbine rotor. As the test case, we use the NREL 5MW offshore baseline wind-turbine rotor. This class of computational problems are rather challenging, because they involve large Reynolds numbers and rotating turbulent flows, and computing the correct torque requires an accurate and meticulous numerical approach. We compute the problem with both the original version of the DSD/SST formulation and a recently introduced version with an advanced turbulence model. The DSD/SST formulation with the advanced turbulence model is a space–time version of the residual-based variational multiscale method. We compare our results to those reported recently, which were obtained with the residual-based variational multiscale Arbitrary Lagrangian–Eulerian method using NURBS for spatial discretization and which we take as the reference solution. While the original DSD/SST formulation yields torque values not far from the reference solution, the DSD/SST formulation with the variational multiscale turbulence model yields torque values very close to the reference solution.

Keywords

DSD/SST formulation Space–time variational multiscale method Wind-turbine aerodynamics Rotating turbulent flow Torque values 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011) 3D simulation of wind turbine rotors at full scale. Part I. Geometry modeling and aerodynamics. Int J Numer Methods Fluids 65: 207–235zbMATHCrossRefGoogle Scholar
  2. 2.
    Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II. Fluid–structure interaction modeling with composite blades. Int J Numer MethodsFluids 65: 236–253zbMATHCrossRefGoogle Scholar
  3. 3.
    Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194: 4135–4195MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29: 329–349MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26: 27–36CrossRefGoogle Scholar
  6. 6.
    Tezduyar TE, Aliabadi SK, Behr M, Mittal S (1994) Massively parallel finite element simulation of compressible and incompressible flows. Comput Methods Appl Mech Eng 119: 157–177zbMATHCrossRefGoogle Scholar
  7. 7.
    Mittal S, Tezduyar TE (1994) Massively parallel finite element computation of incompressible flows involving fluid–body interactions. Comput Methods Appl Mech Eng 112: 253–282MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows—Fluid–structure interactions. Int J Numer Methods Fluids 21: 933–953zbMATHCrossRefGoogle Scholar
  9. 9.
    Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and high performance computing. Comput Mech 18: 397–412zbMATHCrossRefGoogle Scholar
  10. 10.
    Johnson AA, Tezduyar TE (1997) Parallel computation of incompressible flows with complex geometries. Int J Numer Methods Fluids 24: 1321–1340zbMATHCrossRefGoogle Scholar
  11. 11.
    Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23: 130–143zbMATHCrossRefGoogle Scholar
  12. 12.
    Behr M, Tezduyar T (1999) The Shear-Slip Mesh Update Method. Comput Methods Appl Mech Eng 174: 261–274zbMATHCrossRefGoogle Scholar
  13. 13.
    Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Eng 190: 321–332zbMATHCrossRefGoogle Scholar
  14. 14.
    Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J, Accorsi M (2000) Parachute fluid–structure interactions: 3-D computation. Comput Methods Appl Mech Eng 190: 373–386zbMATHCrossRefGoogle Scholar
  15. 15.
    Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8: 83–130zbMATHCrossRefGoogle Scholar
  16. 16.
    Tezduyar T, Osawa Y (2001) Fluid–structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191: 717–726zbMATHCrossRefGoogle Scholar
  17. 17.
    Ohayon R (2001) Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems. Comput Methods Appl Mech Eng 190: 3009–3019zbMATHCrossRefGoogle Scholar
  18. 18.
    Behr M, Tezduyar T (2001) Shear-slip mesh update in 3D computation of complex flow problems with rotating mechanical components. Comput Methods Appl Mech Eng 190: 3189–3200zbMATHCrossRefGoogle Scholar
  19. 19.
    Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70: 58–63zbMATHCrossRefGoogle Scholar
  20. 20.
    Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193: 2019–2032zbMATHCrossRefGoogle Scholar
  21. 21.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2004) Influence ofwall elasticity on image-based blood flowsimulation. Jpn Soc Mech Eng J Ser A 70:1224–1231 (in Japanese)Google Scholar
  22. 22.
    Tezduyar TE, Sathe S, Keedy R, Stein K (2004) Space–time techniques for finite element computation of flows with moving boundaries and interfaces. In: Gallegos S, Herrera I, Botello S, Zarate F, Ayala G (eds) Proceedings of the III International Congress on Numerical Methods in Engineering and Applied Science. CD-ROM, MonterreyGoogle Scholar
  23. 23.
    van Brummelen EH, van de Borst R (2005) On the nonnormality of subiteration for a fluid-structure interaction problem. SIAM J Sci Comput 27: 599–621MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195: 2002–2027MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Methods Appl Mech Eng 195: 5743–5753MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the Deforming-Spatial-Domain/Stabilized Space–Time formulation. Comput Methods Appl Mech Eng 195: 1885–1895MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38: 482–490zbMATHCrossRefGoogle Scholar
  28. 28.
    Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Khurram RA, Masud A (2006) A multiscale/stabilized formulation of the incompressible Navier–Stokes equations for moving boundary flows and fluid–structure interaction. Comput Mech 38: 403–416zbMATHCrossRefGoogle Scholar
  30. 30.
    Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics. Int J Numer Methods Fluids 54: 901–922MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Influence of wall elasticity in patient-specific hemodynamic simulations. Comput Fluids 36: 160–168zbMATHCrossRefGoogle Scholar
  32. 32.
    Sawada T, Hisada T (2007) Fuid–structure interaction analysis of the two dimensional flag-in-wind problem by an interface tracking ALE finite element method. Comput Fluids 36: 136–146zbMATHCrossRefGoogle Scholar
  33. 33.
    Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54: 855–900MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—Dependence of the effect on the aneurysm shape. Int J Numer Methods Fluids 54: 995–1009MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Manguoglu M, Sameh AH, Tezduyar TE, Sathe S (2008) A nested iterative scheme for computation of incompressible flows in long domains. Comput Mech 43: 73–80MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43: 39–49zbMATHCrossRefGoogle Scholar
  37. 37.
    Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2008) Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique. Int J Numer Methods Fluids 57: 601–629MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: Influence of structural modeling. Comput Mech 43: 151–159zbMATHCrossRefGoogle Scholar
  39. 39.
    Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43: 3–37MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Isaksen JG, Bazilevs Y, Kvamsdal T, Zhang Y, Kaspersen JH, Waterloo K, Romner B, Ingebrigtsen T (2008) Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39: 3172–3178CrossRefGoogle Scholar
  41. 41.
    Kuttler U, Wall WA (2008) Fixed-point fluid–structure interaction solvers with dynamic relaxation. Comput Mech 43: 61–72CrossRefGoogle Scholar
  42. 42.
    Dettmer WG, Peric D (2008) On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction. Comput Mech 43: 81–90zbMATHCrossRefGoogle Scholar
  43. 43.
    Bazilevs Y, Hughes TJR (2008) NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43: 143–150MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Tezduyar TE, Schwaab M, Sathe S (2009) Sequentially-coupled Arterial Fluid–Structure Interaction (SCAFSI) technique. Comput Methods Appl Mech Eng 198: 3524–3533MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2009) Fluid–structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Comput Methods Appl Mech Eng 198: 3613–3621MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Manguoglu M, Sameh AH, Saied F, Tezduyar TE, Sathe S (2009) Preconditioning techniques for nonsymmetric linear systems in computation of incompressible flows. J Appl Mech 76: 021204CrossRefGoogle Scholar
  47. 47.
    Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198: 3534–3550MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Computational Mechanics 45: 77–89MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space–time finite element computation of arterial fluid–structure interactions with patient-specific data. Int J Numer Methods Biomed Eng 26: 101–116zbMATHCrossRefGoogle Scholar
  50. 50.
    Tezduyar TE, Takizawa K, Christopher J (2009) Multiscale Sequentially-Coupled Arterial Fluid–Structure Interaction (SCAFSI) technique”. In: Hartmann S, Meister A, Schaefer M, Turek S (eds) International workshop on fluid–structure interaction—theory, numerics and applications. Kassel University Press, Germany, pp 231–252Google Scholar
  51. 51.
    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46: 17–29MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Comput Mech 46: 31–41MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms. Int J Numer Methods Biomed Eng 26: 336–347MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2010) Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Comput Mech 46: 83–89zbMATHCrossRefGoogle Scholar
  55. 55.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms. Comput Mech 46: 43–52zbMATHCrossRefGoogle Scholar
  56. 56.
    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 46: 3–16MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space–time finite element computation of complex fluid–structure interactions. Int J Numer Methods Fluids 64: 1201–1218zbMATHCrossRefGoogle Scholar
  58. 58.
    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9: 481–498CrossRefGoogle Scholar
  59. 59.
    Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes. Int J Numer Methods Fluids 65: 271–285zbMATHCrossRefGoogle Scholar
  60. 60.
    Takizawa K, Wright S, Moorman C, Tezduyar TE (2011) Fluid–structure interaction modeling of parachute clusters. Int J Numer Methods Fluids 65: 286–307zbMATHCrossRefGoogle Scholar
  61. 61.
    Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement. Int J Numer Methods Fluids 65: 135–149MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space–time fluid–structure interaction modeling of patient-specific cerebral aneurysms. Int J Numer Methods Biomed Eng. doi: 10.1002/cnm.1433
  63. 63.
    Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mech. doi: 10.1007/s00466-011-0571-z
  64. 64.
    Tezduyar T, Aliabadi S, Behr M (1998) Enhanced-Discretization Interface-Capturing Technique (EDICT) for computation of unsteady flows with interfaces. Comput Methods Appl Mech Eng 155: 235–248zbMATHCrossRefGoogle Scholar
  65. 65.
    Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Tezduyar T, Aliabadi S, Behr M (1997) Enhanced-Discretization Interface-Capturing Technique. In: Matsumoto Y, Prosperetti A (eds) ISAC ’97 High Performance Computing on Multiphase Flows. Japan Society of Mechanical Engineers, Japan, pp 1–6Google Scholar
  67. 67.
    Benek JA, Buning PG, Steger JL (1985) A 3-D chimera grid embedding technique. Paper 85-1523, AIAA, New YorkGoogle Scholar
  68. 68.
    Akin JE, Tezduyar TE, Ungor M (2007) Computation of flow problems with the mixed interface-tracking/interface-capturing technique (MITICT). Comput Fluids 36: 2–11zbMATHCrossRefGoogle Scholar
  69. 69.
    Cruchaga MA, Celentano DJ, Tezduyar TE (2007) A numerical model based on the Mixed Interface-Tracking/Interface-Capturing Technique (MITICT) for flows with fluid–solid and fluid–fluid interfaces. Int J Numer Methods Fluids 54: 1021–1030zbMATHCrossRefGoogle Scholar
  70. 70.
    Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28: 1–44MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94: 339–351MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94: 353–371MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32: 199–259MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95: 221–242zbMATHCrossRefGoogle Scholar
  75. 75.
    Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška–Brezzi condition: A stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59: 85–99MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    Hughes TJR, Hulbert GM (1988) Space–time finite element methods for elastodynamics: formulations and error estimates. Comput Methods Appl Mech Eng 66: 339–363MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Tezduyar TE, Park YJ (1986) Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations. Comput Methods Appl Mech Eng 59: 307–325zbMATHCrossRefGoogle Scholar
  78. 78.
    Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190: 411–430zbMATHCrossRefGoogle Scholar
  79. 79.
    Akin JE, Tezduyar T, Ungor M, Mittal S (2003) Stabilization parameters and Smagorinsky turbulence model. J Appl Mech 70: 2–9zbMATHCrossRefGoogle Scholar
  80. 80.
    Tezduyar TE (2004) Finite element methods for fluid dynamics with moving boundaries and interfaces. In: Stein E, Borst RD, Hughes TJR (eds) Encyclopedia of Computational Mechanics: fluids, vol 3, Chap 17. John Wiley and Sons, New YorkGoogle Scholar
  81. 81.
    Akin JE, Tezduyar TE (2004) Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements. Comput Methods Appl Mech Eng 193: 1909–1922zbMATHCrossRefGoogle Scholar
  82. 82.
    Catabriga L, Coutinho ALGA, Tezduyar TE (2005) Compressible flow SUPG parameters computed from element matrices. Commun Numer Methods Eng 21: 465–476MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    Corsini A, Rispoli F, Santoriello A, Tezduyar TE (2006) Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation. Comput Mech 38: 356–364MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    Catabriga L, Coutinho ALGA, Tezduyar TE (2006) Compressible flow SUPG parameters computed from degree-of-freedom submatrices. Comput Mech 38: 334–343zbMATHCrossRefGoogle Scholar
  85. 85.
    Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36: 191–206MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    Rispoli F, Corsini A, Tezduyar TE (2007) Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD). Comput Fluids 36: 121–126zbMATHCrossRefGoogle Scholar
  87. 87.
    Catabriga L, de Souza DAF, Coutinho ALGA, Tezduyar TE (2009) Three-dimensional edge-based SUPG computation of inviscid compressible flows with YZβ shock-capturing. J Appl Mech 76: 021208CrossRefGoogle Scholar
  88. 88.
    Corsini A, Iossa C, Rispoli F, Tezduyar TE (2010) A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors. Comput Mech 46: 159–167MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199: 828–840MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Corsini A, Rispoli F, Tezduyar TE (2011) Stabilized finite element computation of NOx emission in aero-engine combustors. Int J Numer Methods Fluids 65: 254–270MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Fluid–structure interaction modeling of ringsail parachutes. Comput Mech 43: 133–142zbMATHCrossRefGoogle Scholar
  92. 92.
    Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2011) Patient-specific arterial fluid–structure interaction modeling of cerebral aneurysms. Int J Numer Methods Fluids 65: 308–323zbMATHCrossRefGoogle Scholar
  93. 93.
    Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput Methods Appl Mech Eng 127: 387–401zbMATHCrossRefGoogle Scholar
  94. 94.
    Hughes TJR, Mazzei L, Jansen KE (2000) Large-eddy simulation and the variational multiscale method. Comput Vis Sci 3: 47–59zbMATHCrossRefGoogle Scholar
  95. 95.
    Hughes TJR, Oberai AA, Mazzei L (2001) Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys Fluids 13: 1784–1799CrossRefGoogle Scholar
  96. 96.
    Hughes TJR, Sangalli G (2007) Variational multiscale analysis: the fine-scale Green’s function, projection, optimization, localization, and stabilized methods. SIAM J Numer Anal 45: 539–557MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    Bazilevs Y, Calo VM, Cottrel JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197: 173–201zbMATHCrossRefGoogle Scholar
  98. 98.
    Bazilevs Y, Akkerman I (2010) Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual–based variational multiscale method. J Comput Phys 229: 3402–3414MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development. Technical Report NREL/TP-500-38060, National Renewable Energy LaboratoryGoogle Scholar
  100. 100.
    Kooijman HJT, Lindenburg C, Winkelaar D, van der Hooft E (2003) DOWEC 6 MW pre-design: aero-elastic modelling of the DOWEC 6 MW pre-design in PHATAS. Technical Report DOWEC-F1W2-HJK-01-046/9Google Scholar
  101. 101.
    Jonkman JM, Jr MLB (2005) FAST user’s guide. Technical Report NREL/EL-500-38230, National Renewable Energy Laboratory, GoldenGoogle Scholar
  102. 102.
    Spera DA (1994) Introduction to modern wind turbines. In: Spera DA (ed) Wind turbine technology: fundamental concepts of wind Turbine engineering. ASME Press, New York, pp 47–72Google Scholar
  103. 103.
    Takizawa K, Moorman C, Wright S, Tezduyar TE (2010) Computer modeling and analysis of the Orion spacecraft parachutes. In: Bungartz H-J, Mehl M, Schafer M (eds) Fluid–structure interaction II—modelling, simulation, optimization, Lecture Notes in Computational Science and Engineering, vol 73. Springer, Berlin, pp 53–81Google Scholar
  104. 104.
    Saad Y, Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7: 856–869MathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20: 359–392MathSciNetCrossRefGoogle Scholar
  106. 106.
    Spalart PR (2000) Strategies for turbulence modelling and simulations. Int J Heat Fluid Flow 21: 252–263CrossRefGoogle Scholar
  107. 107.
    Bazilevs Y, Michler C, Calo VM, Hughes TJR (2010) Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput Methods Appl Mech Eng 199: 780–790MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Kenji Takizawa
    • 1
  • Bradley Henicke
    • 2
  • Tayfun E. Tezduyar
    • 2
  • Ming-Chen Hsu
    • 3
  • Yuri Bazilevs
    • 3
  1. 1.Department of Modern Mechanical Engineering and Waseda Institute for Advanced StudyWaseda UniversityShinjuku-ku, TokyoJapan
  2. 2.Mechanical EngineeringRice UniversityHoustonUSA
  3. 3.Structural EngineeringUniversity of California, San DiegoLa JollaUSA

Personalised recommendations