Computational Mechanics

, Volume 48, Issue 4, pp 461–475 | Cite as

Transient three-dimensional contact problems: mortar method. Mixed methods and conserving integration

Open Access
Original Paper


The present work deals with the development of an energy-momentum conserving method to unilateral contact constraints and is a direct continuation of a previous work (Hesch and Betsch in Comput Mech 2011, doi:10.1007/s00466-011-0597-2) dealing with the NTS method. In this work, we introduce the mortar method and a newly developed segmentation process for the consistent integration of the contact interface. For the application of the energy-momentum approach to mortar constraints, we extend an approach based on a mixed formulation to the segment definition of the mortar constraints. The enhanced numerical stability of the newly proposed discretization method will be shown in several examples.


Contact Energy methods Large deformation Mortar method 


  1. 1.
    Armero F, Petöcz E (1998) Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Comput Methods Appl Mech Eng 158: 269–300MATHCrossRefGoogle Scholar
  2. 2.
    Bernardi C, Mayday Y, Patera AT (1994) A new nonconforming approach to domain decomposition: the mortar element method. In: Nonlinear partial differential equations and their applications, pp 13–51Google Scholar
  3. 3.
    Betsch P, Steinmann P (2001) Conserving properties of a time FE method—part II: time-stepping schemes for non-linear elastodynamics. Int J Numer Methods Eng 50: 1931–1955MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Betsch P, Steinmann P (2002) Conservation properties of a time FE method. Part III: mechanical systems with holonomic constraints. Int J Numer Methods Eng 53: 2271–2304MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Betsch P, Uhlar S (2007) Energy-momentum conserving integration of multibody dynamics. Multibody Syst Dyn 17(4): 243–289MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Chawla V, Laursen TA (1998) Energy consistent algorithms for frictional contact problems. Int J Numer Methods Eng 42: 799–827MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    El-Abbasi N, Bathe KJ (2001) Stability and patch test performance of contact discretizations and a new solution algorithm. Int J Numer Methods Eng 79: 1473–1486Google Scholar
  8. 8.
    Fischer KA, Wriggers P (2005) Frictionless 2d contact formulations for finite deformations based on the mortar method. Comput Mech 36: 226–244MATHCrossRefGoogle Scholar
  9. 9.
    Flemisch B, Puso MA, Wohlmuth BI (2005) A new dual mortar method for curved interfaces: 2d elasticity. Int J Numer Methods Eng 63: 813–832MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Gonzalez O (1996) Time integration and discrete Hamiltonian systems. J Nonlinear Sci 6: 449–467MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Gonzalez O (1999) Mechanical systems subject to holonomic constraints: differential-algebraic formulations and conservative integration. Physica D 132: 165–174MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Gonzalez O (2000) Exact energy and momentum conserving algorithms for general models in nonlinear elasticity. Comput Methods Appl Mech Eng 190: 1763–1783MATHCrossRefGoogle Scholar
  13. 13.
    Haikal G, Hjelmstad KD (2007) A finite element formulation of non-smooth contact based on oriented volumes for quadrilateral and hexahedral elements. Comput Methods Appl Mech Eng 196: 4690–4711MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Hauret P, LeTallec P (2006) Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact. Comput Methods Appl Mech Eng 195: 4890–4916MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Hesch C, Betsch P (2009) A mortar method for energy-momentum conserving schemes in frictionless dynamic contact problems. Int J Numer Methods Eng 77: 1468–1500MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Hesch C, Betsch P (2011) Transient 3d contact problems—NTS method: mixed methods and conserving integration. Comput Mech doi:10.1007/s00466-011-0597-2
  17. 17.
    Hesch C, Betsch P (2010) Transient 3d domain decomposition problems: frame-indifferent mortar constraints and conserving integration. Int J Numer Methods Eng 82: 329–358MathSciNetMATHGoogle Scholar
  18. 18.
    Hintermueller M, Ito K, Kunisch K (2003) The primal-dual active set strategy as a semismooth Newton method. SIAM 13: 865–888MATHGoogle Scholar
  19. 19.
    Hüeber S, Wohlmuth BI (2005) A primal-dual active set strategy for non-linear multibody contact problems. Comput Methods Appl Mech Eng 194: 3147–3166MATHCrossRefGoogle Scholar
  20. 20.
    Hughes TJR (2000) The finite element method. Dover, NYMATHGoogle Scholar
  21. 21.
    Krause R, Wohlmuth BI (2000) Nonconforming domain decomposition techniques for linear elasticity. East West J Numer Math 8(3): 177–206MathSciNetMATHGoogle Scholar
  22. 22.
    Laursen TA (2002) Computational contact and impact mechanics. Springer, BerlinMATHGoogle Scholar
  23. 23.
    Laursen TA, Chawla V (1997) Design of energy conserving algorithms for frictionless dynamic contact problems. Int J Numer Methods Eng 40: 863–886MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Laursen TA, Love GR (2002) Improved implicit integrators for transient impact problems—geometric admissibility within the conserving framework. Int J Numer Methods Eng 53: 245–274MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Leimkuhler BJ, Reich S (2004) Simulating Hamiltonian dynamics. Cambridge University Press, CambridgeMATHGoogle Scholar
  26. 26.
    McDevitt TW, Laursen TA (2000) A mortar-finite element formulation for frictional contact problems. Int J Numer Methods Eng 48: 1525–1547MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Puso MA (2004) A 3d mortar method for solid mechanics. Int J Numer Methods Eng 59: 315–336MATHCrossRefGoogle Scholar
  28. 28.
    Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193: 601–629MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Puso MA, Laursen TA (2004) A mortar segment-to-segment frictional contact method for large deformations. Comput Methods Appl Mech Eng 193: 4891–4913MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Puso MA, Laursen TA, Solberg JM (2008) A segment-to-segment mortar contact method for quadratic elements and large deformations. Comput Methods Appl Mech Eng 197: 555–566MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Simo JC, Tarnow N (1992) The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Z angew Math Phys (ZAMP) 43: 757–792MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Simo JC, Tarnow N, Wong KK (1992) Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Comput Methods Appl Mech Eng 100: 63–116MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Wohlmuth BI (2000) A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J Numer Anal 38(3): 989–1012MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Wohlmuth BI, Krause R (2001) A multigrid methods based on the unconstrained product space arising form motar finite element discretizations. SIAM J Numer Anal 39(1): 192–213MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Wriggers P (2006) Computational contact mechanics, 2nd edn. Springer, BerlinMATHCrossRefGoogle Scholar
  36. 36.
    Yang B, Laursen TA (2008) A contact searching algorithm including bounding volume trees applied to finite sliding mortar formulation. Comput Mech 41: 189–205MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Yang B, Laursen TA, Meng X (2005) Two dimensional mortar contact methods for large deformation frictional sliding. Int J Numer Methods Eng 62: 1183–1225MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics, 6th edn. Butterworth Heinemann, LondonGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Chair of Computational Mechanics, Department of Mechanical EngineeringUniversity of SiegenSiegenGermany

Personalised recommendations