Advertisement

Computational Mechanics

, Volume 50, Issue 3, pp 273–283 | Cite as

The effect of loading on surface roughness at the atomistic level

  • Peter Spijker
  • Guillaume Anciaux
  • Jean-François Molinari
Original Paper

Abstract

One of the key points to better understand the origins of friction is to know how two surfaces in contact adhere to one another. In this paper we present molecular dynamics (MD) simulations of two aluminium bodies in contact, exposed to a range of normal loads. The contact surfaces of both aluminium bodies have a self-affine fractal roughness, but the exact roughness varies from simulation to simulation. Both bodies are allowed to have an adhesive interaction and are fully deformable. Tracking important contact parameters (such as contact area, number of contact clusters, and contact pressure) during a simulation is challenging. We propose an algorithm (embedded within a parallel MD code) which is capable of accessing these contact statistics. As expected, our results show that contact area is increasing in proportion with applied load, and that a higher roughness reduces contact area. Contact pressure distributions are compared to theoretical models, and we show that they are shifted into the tensile regime due to the inclusion of adhesion in our model.

Keywords

Contact mechanics Molecular dynamics Friction Roughness Nanotribology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen MP, Tildesley DJ (1987) Computer Simulation of Liquids. 1st edn. Oxford University Press, OxfordzbMATHGoogle Scholar
  2. 2.
    Amontons G (1699) De la resistance causée dans les machines. Mem Acad R A 12: 275–282Google Scholar
  3. 3.
    Anciaux G, Molinari JF (2009) Contact mechanics at the nanoscale, a 3D multiscale approach. Int J Numer Meth Eng 79: 1041–1067zbMATHCrossRefGoogle Scholar
  4. 4.
    Archard JF (1953) Contact and rubbing of flat surfaces. J Appl Phys 24: 981–988CrossRefGoogle Scholar
  5. 5.
    Blau PJ (2001) The significance and use of the friction coefficient. Tribol Int 34: 585–591CrossRefGoogle Scholar
  6. 6.
    Bowden FP, Tabor D (2001) The friction and lubrication of solids. Oxford University Press, USAzbMATHGoogle Scholar
  7. 7.
    Campañà C, Müser MH, Robbins MO (2008) Elastic contact between self-affine surfaces: comparison of numerical stress and contact correlation functions with analytic predictions. J Phys Condens Matter 20: 354013CrossRefGoogle Scholar
  8. 8.
    Cheng S, Luan B, Robbins MO (2010) Contact and friction of nanoasperities: effects of adsorbed monolayers. Phys Rev E 81(1): 016102CrossRefGoogle Scholar
  9. 9.
    Ciavarella M, Greenwood J, Paggi M (2008) Inclusion of “interaction” in the Greenwood and Williamson contact theory. Wear 265: 729–734CrossRefGoogle Scholar
  10. 10.
    Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to Algorithms, 3rd edn. MIT Press, CambridgezbMATHGoogle Scholar
  11. 11.
    Coulomb CA (1821) Théorie des machines simples. France, ParisGoogle Scholar
  12. 12.
    Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29: 6443–6453CrossRefGoogle Scholar
  13. 13.
    Greenwood JA, Williamson JBP (1966) Contact of nominally flat surfaces. Proc R Soc Lond A 295: 300–319CrossRefGoogle Scholar
  14. 14.
    Hyun S, Pei L, Molinari JF, Robbins MO (2004) Finite-element analysis of contact between elastic self-affine surfaces. Phys Rev E 70: 026117CrossRefGoogle Scholar
  15. 15.
    Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comp Phys 151: 283–312zbMATHCrossRefGoogle Scholar
  16. 16.
    Knecht V, Marrink SJ (2007) Molecular dynamics simulations of lipid vesicle fusion in atomic detail. Biophys J 92: 4254–4261CrossRefGoogle Scholar
  17. 17.
    Lennard-Jones JE (1931) Cohesion. Proc Phys Soc 43: 461–482zbMATHCrossRefGoogle Scholar
  18. 18.
    Luan B, Robbins MO (2005) The breakdown of continuum models for mechanical contacts. Nature 435: 929–932CrossRefGoogle Scholar
  19. 19.
    Luan B, Robbins MO (2006) Contact of single asperities with varying adhesion: comparing continuum mechanics to atomistic simulations. Phys Rev E 74: 026111CrossRefGoogle Scholar
  20. 20.
    Luan B, Robbins MO (2009) Hybrid atomistic/continuum study of contact and friction between rough solids. Tribol Lett 36: 1–16CrossRefGoogle Scholar
  21. 21.
    Mandelbrot BB, Passoja DE, Paullay AJ (1984) Fractal character of fracture surfaces of metals. Nature 308: 721–722CrossRefGoogle Scholar
  22. 22.
    Manners W, Greenwood J (2006) Some observations on Persson’s diffusion theory of elastic contact. Wear 261: 600–610CrossRefGoogle Scholar
  23. 23.
    Markvoort AJ, Pieterse K, Steijaert MN, Spijker P, Hilbers PAJ (2005) The bilayer-vesicle transition is entropy-driven. J Phys Chem B 109: 22649–22654CrossRefGoogle Scholar
  24. 24.
    Miller GSP (1986) The definition and rendering of terrain maps. SIGGRAPH ’86: Proceedings of the 13th annual conference on Computer graphics and interactive techniques. ACM, New York, pp 39–48Google Scholar
  25. 25.
    Mo Y, Szlufarska I (2010) Roughness picture of friction in dry nanoscale contacts. Phys Rev B 81: 035405CrossRefGoogle Scholar
  26. 26.
    Mo Y, Turner KT, Szlufarska I (2009) Friction laws at the nanoscale. Nature 457: 1116–1119CrossRefGoogle Scholar
  27. 27.
    Morse PM (1929) Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys Rev 34: 57–64zbMATHCrossRefGoogle Scholar
  28. 28.
    Mosey NJ, Müser MH (2007) Atomistic modeling of friction. Rev Comp Chem 25: 67–124CrossRefGoogle Scholar
  29. 29.
    Nye JF (1985) Physical properties of crystals. Oxford University Press, OxfordGoogle Scholar
  30. 30.
    Paggi M, Ciavarella M (2010) The coefficient of proportionality κ between real contact area and load, with new asperity models. Wear 268: 1020–1029CrossRefGoogle Scholar
  31. 31.
    Persson BNJ, Albohr O, Tartaglino U, Volokitin AI, Tosatti E (2005) On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J Phys Condens Matter 17: R1–R62CrossRefGoogle Scholar
  32. 32.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117: 1–19zbMATHCrossRefGoogle Scholar
  33. 33.
    Spijker P, van Hoof B, Debertrand M, Markvoort AJ, Vaidehi N, Hilbers PAJ (2010) Coarse grained molecular dynamic simulations of transmembrane protein–lipid systems. Int J Mol Sci 11: 2393–2420CrossRefGoogle Scholar
  34. 34.
    Spijker P, Markvoort AJ, Nedea SV, Hilbers PAJ (2010) Computation of accommodation coefficients and the use of velocity correlation profiles in molecular dynamics simulations. Phys Rev E 81: 011203CrossRefGoogle Scholar
  35. 35.
    Tadmor E, Ortiz M, Phillips R (1996) Quasicontinuum analysis of defects in solids. Philos Mag A Phys Cond Mat 73: 1529–1563Google Scholar
  36. 36.
    Voss RF (1985) Fundamental algorithms in computer graphics. Springer, BerlinGoogle Scholar
  37. 37.
    Yang C, Persson BNJ (2008) Contact mechanics: contact area and interfacial separation from small contact to full contact. J Phys Condens Matter 20: 215214CrossRefGoogle Scholar
  38. 38.
    Yang C, Persson BNJ (2008) Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact. Phys Rev Lett 100: 024303CrossRefGoogle Scholar
  39. 39.
    Yang C, Tartaglino U, Persson BN (2006) A multiscale molecular dynamics approach to contact mechanics. Eur Phys J E 19: 47–58CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Peter Spijker
    • 1
  • Guillaume Anciaux
    • 1
  • Jean-François Molinari
    • 1
  1. 1.Computational Solid Mechanics LaboratoryEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations