Computational Mechanics

, Volume 47, Issue 6, pp 701–722 | Cite as

A comparison of structure-preserving integrators for discrete thermoelastic systems

Open Access
Original Paper

Abstract

This paper contains a comparison of three recently proposed structure-preserving time-stepping schemes for nonlinear thermomechanical systems. These schemes can be considered as extension to coupled thermoelastic problems of well-established energy–momentum schemes for nonlinear elastodynamics. The present comparison is performed in the context of a finite-dimensional model problem for coupled thermomechanical systems: the thermoelastic double pendulum. It is shown that, similar to their purely mechanical ancestors, structure-preserving integrators for coupled thermoelasticity in general exhibit superior numerical stability and robustness properties.

Keywords

Thermoelastic Transient Conserving integrators 

References

  1. 1.
    Armero F (2006) Energy-dissipative momentum-conserving time-stepping algorithms for finite strain multiplicative plasticity. Comput Methods Appl Mech Eng 195: 4862–4889MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Armero F, Romero I (2001) On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part II: second-order methods. Comput Methods Appl Mech Eng 190: 6783–6824MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Armero F, Simo JC (1992) A new unconditionally stable fractional step method for non-linear coupled thermomechanical problems. Comput Methods Appl Mech Eng 35(4): 737–766MathSciNetMATHGoogle Scholar
  4. 4.
    Betsch P, Hesch C, Sänger N, Uhlar S (2010) Variational integrators and energy–momentum schemes for flexible multibody dynamics. J Comput Nonlinear Dyn 5(3):031001/1–031001/11Google Scholar
  5. 5.
    Betsch P, Sänger N (2009) On the use of geometrically exact shells in a conserving framework for flexible multibody dynamics. Comput Methods Appl Mech Eng 198: 1609–1630CrossRefGoogle Scholar
  6. 6.
    Betsch P, Steinmann P (2000) Conservation properties of a time FE method. Part I: time-stepping schemes for N-body problems. Int J Numer Methods Eng 49: 599–638MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Betsch P, Steinmann P (2001) Conservation properties of a time FE method. Part II: time-stepping schemes for nonlinear elastodynamics. Int J Numer Methods Eng 50: 1931–1955MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Eriksson K, Estep D, Hansbo P, Johnson C (1996) Computational differential equations. Cambridge University Press, CambridgeMATHGoogle Scholar
  9. 9.
    Géradin M, Cardona A (2001) Flexible multibody dynamics: a finite element approach. Wiley, LondonGoogle Scholar
  10. 10.
    Gonzalez O (1996) Time integration and discrete Hamiltonian systems. J Nonlinear Sci 6: 449–467MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Gonzalez O (2000) Exact energy and momentum conserving algorithms for general models in nonlinear elasticity. Comput Methods Appl Mech Eng 190: 1763–1783MATHCrossRefGoogle Scholar
  12. 12.
    Gonzalez O, Simo JC (1996) On the stability of symplectic and energy–momentum algorithms for non-linear Hamiltonian systems with symmetry. Comput Methods Appl Mech Eng 134: 197–222MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Gonzalez O, Stuart AM (2008) A first course in coninuum mechanics. Cambridge University Press, CambridgeGoogle Scholar
  14. 14.
    Greenspan D (1995) Completely conservative, covariant numerical methodology. Comput Math Appl 29(4): 37–43MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Greenspan D (1998) Conservative motion of a discrete, hexahedral gyroscope. Comput Methods Appl Mech Eng 161: 305–313MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Groß M (2009) High-order accurate and energy–momentum consistent discretisation of dynamic finite deformation thermo-viscoelasticity. Habilitation thesis, University of SiegenGoogle Scholar
  17. 17.
    Groß M, Betsch P (2006) An energy consistent hybrid space-time Galerkin method for nonlinear thermomechanical problems. In: Proc Appl Math Mech (PAMM), vol 6, pp 443–444Google Scholar
  18. 18.
    Groß M, Betsch P (2010) Energy–momentum consistent finite element discretization of dynamic finite viscoelasticity. Int J Numer Methods Eng 81(11): 1341–1386MATHGoogle Scholar
  19. 19.
    Groß M, Betsch P, Steinmann P (2005) Conservation properties of a time FE method. Part IV: higher order energy and momentum conserving schemes. Int J Numer Methods Eng 63: 1849–1897MATHCrossRefGoogle Scholar
  20. 20.
    Hesch C, Betsch P (2009) A mortar method for energy–momentum conserving schemes in frictionless dynamic contact problems. Int J Numer Methods Eng 77(10): 1468–1500MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Hesch C, Betsch P (2011) Energy–momentum consistent algorithms for dynamic thermomechanical problems—Application to mortar domain decomposition problems. Int J Numer Methods Eng. doi:10.1002/nme.3095
  22. 22.
    Hesch C, Betsch P (2010) Transient three-dimensional domain decomposition problems: frame-indifferent mortar constraints and conserving integration. Int J Numer Methods Eng 82(3): 329–358MathSciNetMATHGoogle Scholar
  23. 23.
    Holzapfel GA (2000) Nonlinear solid mechanics. Wiley, LondonMATHGoogle Scholar
  24. 24.
    Krenk S (2007) The role of geometric stiffness in momentum and energy conserving time integration. Int J Numer Methods Eng 71(6): 631–651MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Laursen TA (2002) Computational contact and impact mechanics. Springer, BerlinMATHGoogle Scholar
  26. 26.
    Love GR, Laursen TA (2003) Improved implicit integrators for transient impact problems—dynamic frictional dissipation within an admissible conserving framework. Comput Methods Appl Mech Eng 192: 2223–2248MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Malvern LE (1969) Introduction to the mechanics of a continuous medium. Prentice-Hall, Englewood CliffsGoogle Scholar
  28. 28.
    Meng XN, Laursen TA (2002) Energy consistent algorithms for dynamic finite deformation plasticity. Comput Methods Appl Mech Eng 191(15–16): 1639–1675MATHCrossRefGoogle Scholar
  29. 29.
    HC (2005) Beyond equilibrium thermodynamics. Wiley, LondonCrossRefGoogle Scholar
  30. 30.
    Romero I (2009) Thermodynamically consistent time-stepping algorithms for non-linear thermomechanical systems. Int J Numer Methods Eng 79(6): 706–732MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Romero I (2010) Algorithms for coupled problems that preserve symmetries and the laws of thermodynamics: Part I: monolithic integrators and their application to finite strain thermoelasticity. Comput Methods Appl Mech Eng 199(25–28): 1841–1858MathSciNetCrossRefGoogle Scholar
  32. 32.
    Romero I, Armero F (2002) An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy–momentum conserving scheme in dynamics. Int J Numer Methods Eng 54: 1683–1716MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Simo JC, Tarnow N (1992) The discrete energy–momentum method. Conserving algorithms for nonlinear elastodynamics. Z Angew Math Phys (ZAMP) 43: 757–792MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Simo JC, Tarnow N (1994) A new energy and momentum conserving algorithm for the nonlinear dynamics of shells. Int J Numer Methods Eng 37: 2527–2549MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Simo JC, Tarnow N, Wong KK (1992) Exact energy–momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Comput Methods Appl Mech Eng 100: 63–116MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Chair of Computational Mechanics, Department of Mechanical EngineeringUniversity of SiegenSiegenGermany

Personalised recommendations