Advertisement

Computational Mechanics

, Volume 47, Issue 5, pp 573–590 | Cite as

Forming forces in single point incremental forming: prediction by finite element simulations, validation and sensitivity

  • C. Henrard
  • C. Bouffioux
  • P. Eyckens
  • H. Sol
  • J. R. Duflou
  • P. Van Houtte
  • A. Van Bael
  • L. Duchêne
  • A. M. Habraken
Original Paper

Abstract

The aim of this article is to study the accuracy of finite element simulations in predicting the tool force occurring during the single point incremental forming (SPIF) process. The forming of two cones in soft aluminum was studied with two finite element (FE) codes and several constitutive laws (an elastic–plastic law coupled with various hardening models). The parameters of these laws were identified using several combinations of a tensile test, shear tests, and an inverse modeling approach taking into account a test similar to the incremental forming process. Comparisons between measured and predicted force values are performed. This article shows that three factors have an influence on force prediction: the type of finite element, the constitutive law and the identification procedure for the material parameters. In addition, it confirms that a detailed description of the behavior occurring across the thickness of the metal sheet is crucial for an accurate force prediction by FE simulations, even though a simple analytical formula could provide an otherwise acceptable answer.

Keywords

Single point incremental forming Finite element modeling Force prediction Material parameters identification Inverse modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Duflou JR, Lauwers B, Verbert J, Tunckol Y, de Baerdemaker H (2005) Achievable accuracy in single point incremental forming: case studies. In: Banabic D (ed) Proceedings of the 8th esaform conference, vol 2, pp 675–678, BucharestGoogle Scholar
  2. 2.
    Hirt G, Junk S, Witulski N (2002) Incremental sheet forming: quality evaluation and process simulation. In: Proceedings of the 7th ICTP conference, vol 1, pp 925–930Google Scholar
  3. 3.
    Jeswiet J, Hagan E (2001) Rapid proto-typing of a headlight with sheet metal. In: Proceedings of the 9th international conference on sheet metal, pp 165–170, Leuven, April 2001Google Scholar
  4. 4.
    Leach D, Green AJ, Bramley AN (2001) A new incremental sheet forming process for small batch and prototypes parts. In: Proceedings of the 9th international conference on sheet metal, pp 211–218, Leuven, April 2001Google Scholar
  5. 5.
    Yoon SJ, Yang DY (2003) Development of a highly flexible incremental roll forming process for the manufacture of a doubly curved sheet metal. CIRP Ann Manuf Technol 52: 201–204. doi: 10.1016/S0007-8506(07)60565-4 CrossRefGoogle Scholar
  6. 6.
    Duflou JR, Sol H, Van Bael A, Habraken AM (2003) Description of the SeMPeR project (Sheet Metal oriented Prototyping and Rapid manufacturing), SBO-project financed by the IWT instituteGoogle Scholar
  7. 7.
    He S, Van Bael A, Van Houtte P, Szekeres A, Duflou JR, Henrard C, Habraken AM (2005) Finite element modeling of incremental forming of aluminum sheets. Adv Mater Res 6–8: 525–532CrossRefGoogle Scholar
  8. 8.
    Aerens R, Eyckens P, Van Bael A, Duflou JR (2009) Force prediction for single point incremental forming deduced from experimental and FEM observations. Int J Adv Manuf Technol. doi: 10.1007/s00170-009-2160-2
  9. 9.
    Ambrogio G, Duflou JR, Filice L, Aerens R (2007) Some considerations on force trends in incremental forming of different materials. In: Proceedings of the 10th esaform conference, vol 907 of AIP conference proceedings, pp 193–198. doi: 10.1063/1.2729510
  10. 10.
    Jeswiet J, Duflou JR, Szekeres A (2005) Forces in single point and two point incremental forming. Adv Mater Res 6–8: 449–456CrossRefGoogle Scholar
  11. 11.
    Petek A, Kuzman K, Kopac J (2005) Forces and deformations analysis of incremental sheet metal forming. In: Proceedings of the 11th CAM3S conference, Gliwice-Zakopane, PolandGoogle Scholar
  12. 12.
    Silva MB, Skjoedt M, Martins PAF, Bay N (2008) Revisiting the fundamentals of single point incremental forming by means of membrane analysis. Int J Mac Tools Manuf 48(1): 73–83. doi: 10.1016/j.ijmachtools.2007.07.004 CrossRefGoogle Scholar
  13. 13.
    Duflou JR, Tunçkol Y, Aerens R (2007) Force analysis for single point incremental forming. Key Eng Mater 344: 543–550CrossRefGoogle Scholar
  14. 14.
    Flores P, Duchêne L, Bouffioux C, Lelotte T, Henrard C, Pernin N, Van Bael A, He S, Duflou J, Habraken AM (2007) Model identification and FE simulations: effect of different yield loci and hardening laws in sheet forming. Int J Plast 23: 420–449. doi: 10.1016/j.ijplas.2006.05.006 CrossRefzbMATHGoogle Scholar
  15. 15.
    Eyckens P, Del-lero Moreau J, Duflou JR, Van Bael A, Van Houtte P (2009) Marciniak-Kuczynski modelling of sheet formability in the incremental sheet forming process, taking into account through-thickness shear. In: Proceedings of the 12th ESAFORM2009 conference on material forming. Int J Mater Form Enschede, Netherlands. 2 (Suppl 1): 379–382Google Scholar
  16. 16.
    Emmens WC, van den Boogaard AH (2007) Strain in shear, and material behaviour in incremental forming. Key Eng Mater 344: 519–526CrossRefGoogle Scholar
  17. 17.
    Allwood JM, Shouler DR, Tekkaya AE (2007) The increased forming limits of incremental sheet forming processes. Key Eng Mater 344: 621–628CrossRefGoogle Scholar
  18. 18.
    Allwood JM, Shouler DR (2009) Generalised forming limit diagrams showing increased forming limits with non-planar stress states. Int J Plast 25(7): 1207–1230. doi: 10.1016/j.ijplas.2008.11.001 CrossRefzbMATHGoogle Scholar
  19. 19.
    Eyckens P, Van Bael A, Van Houtte P (2009) Marciniak-Kuczynski type modelling of the effect of through-thickness shear on the forming limits of sheet metal. Int J Plast 25(12): 2249–2268. doi: 10.1016/j.ijplas.2009.02.002 CrossRefGoogle Scholar
  20. 20.
    Eyckens P, Van Bael A, Van Houtte P (2008) An extended Marciniak–Kuczynski forming limit model to assess the influence of through-thickness shear on formability. In: Hora P (ed) Proceedings of the 7th numisheet conference, vol A, pp 193–198, Interlaken, Switzerland, September 2008Google Scholar
  21. 21.
    Emmens WC, van den Boogaard AH (2009) An overview of stabilizing deformation mechanisms in incremental sheet forming. J Mater Process Technol 209(8): 3688–3695. doi: 10.1016/j.jmatprotec.2008.10.003 CrossRefGoogle Scholar
  22. 22.
    Jeswiet J, Micari F, Hirt G, Bramley AN, Duflou JR, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann Manuf Technol 54(2): 88–114. doi: 10.1016/S0007-8506(07)60021-3 CrossRefGoogle Scholar
  23. 23.
    Website of Uddeholm (http://www.uddeholm.com) (2009) manufacturer of the Vanadis 23 tools. Last visited in November 2009
  24. 24.
    Duflou JR, Szekeres A, Vanherck P (2005) Force measurements for single point incremental forming: an experimental study. Adv Mater Res 6–8: 441–448CrossRefGoogle Scholar
  25. 25.
    Eyckens P, Belkassem B, Henrard C, Gu J, Sol H, Habraken AM, Duflou JR, Van Houtte P, Van Bael A (2010) Strain evolution in the single point incremental forming process: digital image correlation measurement and finite element prediction. Int J Mate Form. doi: 10.1007/s12289-010-0995-6
  26. 26.
    Duflou JR, Verbert J, Belkassem B, Gu J, Sol H, Henrard C, Habraken AM (2008) Process window enhancement for single point incremental forming through multi-step toolpaths. CIRP Ann Manuf Technol 57: 253–256. doi: 10.1016/j.cirp.2008.03.030 CrossRefGoogle Scholar
  27. 27.
    Cescotto S, Grober H (1985) Calibration and application of an elastic viscoplastic constitutive equation for steels in hot-rolling conditions. Eng Comput 2(2): 101–106. doi: 10.1108/eb023607 CrossRefGoogle Scholar
  28. 28.
    Wang J, Wagoner RH (2004) A new hexahedral solid element for 3D FEM simulation of sheet metal forming. In: Ghosh S, Castro JC, Lee JK (eds) Proceedings of the 8th numiform conference, vol 712 of AIP conference proceedings, pp 2181–2186, Columbus, OH, USA, The Ohio State University. doi: 10.1063/1.1766858
  29. 29.
    Duchêne L, El Houdaigui F, Habraken AM (2007) Length changes and texture prediction during free end torsion test of copper bars with FEM and remeshing techniques. Int J Plast 23: 1417–1438. doi: 10.1016/j.ijplas.2007.01.008 CrossRefzbMATHGoogle Scholar
  30. 30.
    Habraken AM, Cescotto S (1998) Contact between deformable solids, the fully coupled approach. Math Comput Model 28(4–8):153–169. doi: 10.1016/S0895-7177(98)00115-0 Google Scholar
  31. 31.
    Li K (1995) Contribution to the finite element simulation of three-dimensional sheet metal forming. PhD thesis, University of Liège, Belgium. http://bictel.ulg.ac.be
  32. 32.
    Jaamei S, Frey F, Jetteur P (1989) Nonlinear thin shell finite element with six degrees of freedom per node. Comput Methods Appl Mech Eng 75(1–3):251–266. doi: 10.1016/0045-7825(89)90028-5
  33. 33.
    Bouffioux C, Henrard C, Gu J, Duflou JR, Habraken AM, Sol H (2007) Development of an inverse method for identification of materials parameters in the single point incremental forming process. In: Tisza M (ed) Proceedings of the IDDRG 2007 conference, Győr, HungaryGoogle Scholar
  34. 34.
    Bouffioux C, Eyckens P, Henrard C, Aerens R, Van Bael A, Sol H, Duflou JR, Habraken AM (2008) Identification of material parameters to predict single point incremental forming forces. Int J Mater Form. doi: 10.1007/s12289-008-0183-0
  35. 35.
    Bouffioux C, Henrard C, Eyckens P, Aerens R, Van Bael A, Sol H, Duflou JR, Habraken AM (2008) Comparison of the tests chosen for material parameters identification to predict single point incremental forming forces. In: Proceedings of the IDDRG 2008 conference, vol 1, pp 133–144, Olofström, SwedenGoogle Scholar
  36. 36.
    Henrard C (2005) Development of a contact model adapted to incremental forming. Master’s thesis, University of Liège. Supervisor: Dr. Anne Marie HabrakenGoogle Scholar
  37. 37.
    Eyckens P, He S, Van Bael A, Van Houtte P, Duflou J (2007) Forming limit predictions for the serrated strain paths in single point incremental sheet forming. In: Proceedings of the 9th numiform conference, vol 908 of AIP conference proceedings, pp 141–146. doi: 10.1063/1.2740802
  38. 38.
    Eyckens P, Van Bael A, Aerens R, Duflou JR, Van Houtte P (2008) Small-scale finite element modelling of the plastic deformation zone in the incremental forming process. Int J Mater Form. doi: 10.1007/s12289-008-0186-x
  39. 39.
    Lemaître J, Chaboche J-L (1985) Mécanique des matériaux solides. Dunod, ParisGoogle Scholar
  40. 40.
    Dennis JE, Schnabel RB (1983) Numerical methods for unconstrained Optimization and Nonlinear Equations. Prentice Hall, Englewood CliffszbMATHGoogle Scholar
  41. 41.
    Rabahallah M, Bouvier S, Balan T, Bacroix B (2009) Numerical simulation of sheet metal forming using anisotropic strain-rate potentials. Mater Sci Eng A 517(1–2):261–275. doi: 10.1016/j.msea.2009.03.078 Google Scholar
  42. 42.
    Kocks UF, Mecking H (2003) Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci 48(3): 171–273. doi: 10.1016/S0079-6425(02)00003-8 CrossRefGoogle Scholar
  43. 43.
    Henrard C (2009) Numerical simulations of the single point incremental forming process. PhD thesis, University of Liège, Belgium. http://bictel.ulg.ac.be

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • C. Henrard
    • 1
    • 2
  • C. Bouffioux
    • 1
  • P. Eyckens
    • 3
  • H. Sol
    • 4
  • J. R. Duflou
    • 5
  • P. Van Houtte
    • 3
  • A. Van Bael
    • 3
    • 6
  • L. Duchêne
    • 1
  • A. M. Habraken
    • 1
  1. 1.ArGEnCoUniversité de LiègeLiègeBelgium
  2. 2.Samtech S.A.LiègeBelgium
  3. 3.MTMKatholieke Universiteit LeuvenHeverleeBelgium
  4. 4.MEMCVrije Universiteit BrusselBrusselsBelgium
  5. 5.PMAKatholieke Universiteit LeuvenHeverleeBelgium
  6. 6.KHLim (Limburg Catholic University College)DiepenbeekBelgium

Personalised recommendations