Advertisement

Computational Mechanics

, Volume 47, Issue 4, pp 425–453 | Cite as

A Hermite DRK interpolation-based collocation method for the analyses of Bernoulli–Euler beams and Kirchhoff–Love plates

  • Syuan-Mu Chen
  • Chih-Ping WuEmail author
  • Yung-Ming Wang
Original Paper

Abstract

A Hermite differential reproducing kernel (DRK) interpolation-based collocation method is developed for solving fourth-order differential equations where the field variable and its first-order derivatives are regarded as the primary variables. The novelty of this method is that we construct a set of differential reproducing conditions to determine the shape functions of derivatives of the Hermite DRK interpolation, without directly differentiating it. In addition, the shape function of this interpolation at each sampling node is separated into a primitive function possessing Kronecker delta properties and an enrichment function constituting reproducing conditions, so that the nodal interpolation properties are satisfied for the field variable and its first-order derivatives. A weighted least-squares collocation method based on this interpolation is developed for the static analyses of classical beams and plates with fully simple and clamped supports, in which its accuracy and convergence rate are examined, and some guidance for using this method is suggested.

Keywords

Meshless methods Collocation Reproducing kernels Interpolation Kronecker delta properties Plates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139: 3–47CrossRefzbMATHGoogle Scholar
  2. 2.
    Atluri SN, Shen S (2002) The meshless local Petrov-Galerkin (MLPG) method. Tech Science Press, EncinozbMATHGoogle Scholar
  3. 3.
    Liu WK, Chen Y, Jun S, Chen JS, Belytschko T, Pan C, Uras RA, Chang CT (1996) Overview and applications of the reproducing kernel particle methods. Arch Comput Methods Eng 3: 3–80CrossRefMathSciNetGoogle Scholar
  4. 4.
    Li S, Liu WK (2004) Meshfree particle methods. Springer, BerlinzbMATHGoogle Scholar
  5. 5.
    Li S, Liu WK (2002) Meshfree particle methods and their applications. Appl Mech Rev 55: 1–34CrossRefGoogle Scholar
  6. 6.
    Liu GR, Gu YT (2005) Meshfree methods moving beyond the finite element method. CRC Press, New YorkGoogle Scholar
  7. 7.
    Monaghan JJ (1988) An introduction to SPH. Comput Phys Commun 48: 89–96CrossRefzbMATHGoogle Scholar
  8. 8.
    Lucy L (1977) A numerical approach to testing the fission hypothesis. Astron J 82: 1013–1024CrossRefGoogle Scholar
  9. 9.
    Liszka TJ, Duarte CAM, Tworzydlo WW (1996) hp-Meshless cloud method. Comput Methods Appl Mech Eng 139: 263–288CrossRefzbMATHGoogle Scholar
  10. 10.
    Li H, Ng TY, Cheng JQ, Lam KY (2003) Hermite–Cloud: a novel true meshless method. Comput Mech 33: 30–41CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Õnate E, Perazzo F, Miquel J (2001) A finite point method for elasticity problems. Comput Struct 79: 2151–2163CrossRefGoogle Scholar
  12. 12.
    Boroomand B, Najjar M, Õnate E (2009) The generalized finite point method. Comput Mech 44: 173–190CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Liu X, Tai K (2006) Point interpolation collocation method for the solution of partial differential equations. Eng Anal Bound Elem 30: 598–609CrossRefzbMATHGoogle Scholar
  14. 14.
    Zhang X, Liu XH, Song KZ, Lu MW (2001) Least-squares collocation meshless method. Int J Numer Methods Eng 51: 1089–1100CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Zhang X, Song KZ, Lu MW, Liu X (2000) Meshless methods based on collocation with radial basis functions. Comput Mech 26: 333–343CrossRefzbMATHGoogle Scholar
  16. 16.
    Wang QX, Li H, Lam KY (2005) Development of a new meshless-point weighted least squares (PWLS) method for computational mechanics. Comput Mech 35: 170–181CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Aluru NR (2000) A point collocation method based on reproducing kernel approximations. Int J Numer Methods Eng 47: 1083–1121CrossRefzbMATHGoogle Scholar
  18. 18.
    Wu CP, Chiu KH, Wang YM (2008) A meshfree DRK-based collocation method for the coupled analysis of functionally graded magneto-electro-elastic shells and plates. Comput Model Eng Sci 35: 181–214zbMATHMathSciNetGoogle Scholar
  19. 19.
    Wu CP, Wang JS, Wang YM (2009) A DRK interpolation-based collocation method for the analysis of functionally graded piezoelectric hollow cylinders under electro-mechanical loads. Comput Model Eng Sci 52: 1–37Google Scholar
  20. 20.
    Yang SW, Wang YM, Wu CP, Hu HT (2010) A meshless collocation method based on the differential reproducing kernel approximation. Comput Model Eng Sci 60: 1–39MathSciNetGoogle Scholar
  21. 21.
    Wang YM, Chen SM, Wu CP (2010) A meshless collocation method based on the differential reproducing kernel interpolation. Comput Mech 45: 585–606CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20: 1081–1106CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Liu WK, Chen Y, Uras RA, Chang CT (1996) Generalized multiple scale reproducing kernel particle methods. Comput Methods Appl Mech Eng 139: 91–157CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Liu WK, Li S, Belytschko T (1997) Moving least-square reproducing kernel methods (I) methodology and convergence. Comput Methods Appl Mech Eng 143: 113–154CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Li S, Liu WK (1996) Moving least-square reproducing kernel method (II) Fourier analysis. Comput Methods Appl Mech Eng 139: 159–193CrossRefzbMATHGoogle Scholar
  26. 26.
    Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37: 229–256CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Atluri SN, Kim HG, Cho JY (1999) A critical assessment of the truly meshless local Petro-Galerkin (MLPG) and local boundary integral equation (LBIE) methods. Comput Mech 22: 348–372CrossRefGoogle Scholar
  28. 28.
    Atluri SN, Zhu T (1998) A new meshless local Petro-Galerkin (MLPG) approach in computational mechanics. Comput Mech 22: 117–127CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Liu GR, Gu YT (2001) A point interpolation method for two-dimensional solids. Int J Numer Methods Eng 50: 937–951CrossRefzbMATHGoogle Scholar
  30. 30.
    Gu YT, Liu GR (2001) A local point interpolation method for static and dynamic analysis of thin beams. Comput Methods Appl Mech Eng 190: 5515–5528CrossRefzbMATHGoogle Scholar
  31. 31.
    Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10: 307–318CrossRefzbMATHGoogle Scholar
  32. 32.
    De S, Bathe KJ (2000) The method of finite spheres. Comput Mech 25: 329–345CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Li S, Liu WK (1998) Synchronized reproducing kernel interpolant via multiple wavelet expansion. Comput Mech 21: 28–47CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Li S, Liu WK (1999) Reproducing kernel hierarchical partition of unity. Part I—formulation and theory. Int J Numer Methods Eng 45: 251–288CrossRefzbMATHGoogle Scholar
  35. 35.
    Li S, Liu WK (1999) Reproducing kernel hierarchical partition of unity. Part II—applications. Int J Numer Methods Eng 45: 289–317CrossRefGoogle Scholar
  36. 36.
    Liu WK, Han W, Lu H, Li S, Cao J (2004) Reproducing kernel element method. Part I: theoretical formulation. Comput Methods Appl Mech Eng 193: 933–951CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Li S, Lu H, Han W, Liu WK, Simkins DC (2004) Reproducing kernel element method, Part II: Globally conforming I m/C n hierarchies. Comput Methods Appl Mech Eng 193: 953–987CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Lu H, Li S, Simkins DC, Liu WK, Cao J (2004) Reproducing kernel element method. Part III: generalized enrichment and applications. Comput Methods Appl Mech Eng 193: 989–1011CrossRefzbMATHGoogle Scholar
  39. 39.
    Simkins DC Jr, Li S, Lu H, Liu WK (2004) Reproducing kernel element method. Part IV: globally compatible C n(n ≥ 1) triangular hierarchy. Comput Methods Appl Mech Eng 193: 1013–1034CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Chen JS, Pan C, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139: 195–227CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Chen JS, Pan C, Wu CT (1997) Large deformation analysis of rubber based on a reproducing kernel particle method. Comput Mech 19: 211–227CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Liew KM, Ng TY, Wu YC (2002) Meshfree method for large deformation analysis—a reproducing kernel particle approach. Eng Struct 24: 543–551CrossRefGoogle Scholar
  43. 43.
    Zhao X, Liew KM, Ng TY (2003) Vibration analysis of laminated composite cylindrical panels via a meshfree approach. Int J Solids Struct 40: 161–180CrossRefzbMATHGoogle Scholar
  44. 44.
    Cheng R, Liew KM (2009) The reproducing kernel particle method for two-dimensional unsteady heat conduction problems. Comput Mech 45: 1–10CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Kim DW, Kim Y (2003) Point collocation methods using the fast moving least-square reproducing kernel approximation. Int J Numer Methods Eng 56: 1445–1464CrossRefzbMATHGoogle Scholar
  46. 46.
    Lee C, Kim DW, Park SH, Kim HK, Im CH, Jung HK (2008) Point collocation mesh-free using FMLSRKM for solving axisymmetric Laplace equations. IEEE Trans Magn 44: 1234–1237CrossRefGoogle Scholar
  47. 47.
    Oñate E, Idelsohn S, Zienkiewicz OC, Taylor RL (1996) A finite point method in computational mechanics—applications to convective transport and fluid flow. Int J Numer Methods Eng 39: 3839–3866CrossRefzbMATHGoogle Scholar
  48. 48.
    Oñate E, Idelsohn S, Zienkiewicz OC, Taylor RL (1996) A stabilized finite point method for analysis of fluid mechanics problems. Comput Methods Appl Mech Eng 139: 315–347CrossRefzbMATHGoogle Scholar
  49. 49.
    Oñate E, Idelsohn S (1988) A meshfree finite point method for advective-diffusive transport and fluid flow problems. Comput Mech 21: 283–292Google Scholar
  50. 50.
    Wu CP, Chiu KH, Wang YM (2008) A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells. Comput Mater Continua 8: 93–132Google Scholar
  51. 51.
    Wu CP, Chiu KH, Wang YM (2011) RMVT-based meshless collocation and element-free Galerkin methods for the quasi-3D analysis of multilayered composite and FGM plates. Compos Struct 93: 923–943CrossRefGoogle Scholar
  52. 52.
    Krongauz Y, Belytschko T (1996) Enforcement of essential boundary conditions in meshless approximations using finite elements. Comput Methods Appl Mech Eng 131: 133–145CrossRefzbMATHMathSciNetGoogle Scholar
  53. 53.
    Timoshenko SP, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-Hill, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Civil EngineeringNational Cheng Kung UniversityTainanTaiwan, ROC

Personalised recommendations