Advertisement

Computational Mechanics

, Volume 47, Issue 3, pp 265–282 | Cite as

Parallel simulations of three-dimensional cracks using the generalized finite element method

  • D.-J. Kim
  • C. A. Duarte
  • N. A. Sobh
Original Paper

Abstract

This paper presents a parallel generalized finite element method (GFEM) that uses customized enrichment functions for applications where limited a priori knowledge about the solution is available. The procedure involves the parallel solution of local boundary value problems using boundary conditions from a coarse global problem. The local solutions are in turn used to enrich the global solution space using the partition of unity methodology. The parallel computation of local solutions can be implemented using a single pair of scatter–gather communications. Several numerical experiments demonstrate the high parallel efficiency of these computations. For problems requiring non-uniform mesh refinement and enrichment, load unbalance is addressed by defining a larger number of small local problems than the number of parallel processors and by sorting and solving the local problems based on estimates of their workload. A simple and effective estimate of the largest number of processors where load balance among processors is maintained is also proposed. Several three-dimensional fracture mechanics problems aiming at investigating the accuracy and parallel performance of the proposed GFEM are analyzed.

Keywords

Generalized FEM Extended FEM Parallel computation OpenMP Global–local analysis Fracture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babuška I, Caloz G, Osborn JE (1994) Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J Numer Anal 31(4): 945–981MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Babuška I, Melenk JM (1995) The partition of unity finite element method. Technical Report BN-1185, Inst. for Phys. Sc. and Tech., University of MarylandGoogle Scholar
  3. 3.
    Babuška I, Melenk JM (1997) The partition of unity finite element method. Int J Numer Methods Eng 40: 727–758zbMATHCrossRefGoogle Scholar
  4. 4.
    Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45: 601–620MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Belytschko T, Gracie R, Ventura G (2009) A review of extended/generalized finite element methods for material modeling. Model Simul Mater Sci Eng 17: 24. doi: 10.1088/0965-0393/17/4/043001 CrossRefGoogle Scholar
  6. 6.
    Duarte CA (1996) The hp Cloud Method. PhD dissertation, The University of Texas at Austin, Austin, TX, USAGoogle Scholar
  7. 7.
    Duarte CA, Babuška I (2005) A global-local approach for the construction of enrichment functions for the generalized fem and its application to propagating three-dimensional cracks. In: Leitão VMA, Alves CJS, Duarte CA (eds) ECCOMAS Themat Conf Meshless Methods, Lisbon, Portugal, pp 11–14, July 2005 (8 pages)Google Scholar
  8. 8.
    Duarte CA, Babuška I, Oden JT (2000) Generalized finite element methods for three dimensional structural mechanics problems. Comput Struct 77: 215–232CrossRefGoogle Scholar
  9. 9.
    Duarte CA, Kim D-J (2008) Analysis and applications of a generalized finite element method with global–local enrichment functions. Comput Methods Appl Mech Eng 197(6–8): 487–504. doi: 10.1016/j.cma.2007.08.017 MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Duarte CA, Kim D-J, Babuška I (2007) Chapter: a global–local approach for the construction of enrichment functions for the generalized fem and its application to three-dimensional cracks. In: Leitão VMA, Alves CJS, Duarte CA (eds) Advances in meshfree techniques. Comput Methods Appl Sci, vol 5. Springer, The Netherlands ISBN: 978-1-4020-6094-6Google Scholar
  11. 11.
    Duarte CAM, Oden JT (1995) Hp clouds—a meshless method to solve boundary-value problems. Technical Report 95-05, TICAM, The University of Texas at AustinGoogle Scholar
  12. 12.
    Duarte CAM, Oden JT (1996) An hp adaptive method using clouds. Comput Methods Appl Mech Eng 139: 237–262MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Duarte CAM, Oden JT (1996) Hp clouds – An hp meshless method. Numer Methods Partial Differ Equ 12: 673–705MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Duflot M, Bordas S (2008) XFEM and mesh adaptation: a marriage of convenience. In: Eighth World Congr Comput Mech, Venice, Italy, July 2008Google Scholar
  15. 15.
    Farhat C (1988) A simple and efficient automatic fem domain decomposer. Comput Struct 28: 579–602CrossRefGoogle Scholar
  16. 16.
    Farhat C, Roux FX (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Methods Eng 32: 1205–1227zbMATHCrossRefGoogle Scholar
  17. 17.
    Hajjar JF, Abel JF (1989) On the accuracy of some domain-by-domain algorithms for parallel processing of transient structural dynamics. Int J Numer Methods Eng 28: 1855–1874zbMATHCrossRefGoogle Scholar
  18. 18.
    Hsieh S-H, Paulino GH, Abel JF (1995) Recursive spectral algorithms for automatic domain partitioning in parallel finite element analysis. Comput Methods Appl Mech Eng 121: 137–162zbMATHCrossRefGoogle Scholar
  19. 19.
    Hsieh S-H, Paulino GH, Abel JF (1997) Evaluation of automatic domain partitioning algorithms for parallel finite element analysis. Int J Numer Methods Eng 40: 1025–1051zbMATHCrossRefGoogle Scholar
  20. 20.
    Kim D-J, Duarte CA, Pereira JP (2008) Analysis of interacting cracks using the generalized finite element method with global-local enrichment functions. J Appl Mech 75(5): 051107CrossRefGoogle Scholar
  21. 21.
    Kim D-J, Pereira JP, Duarte CA (2010) Analysis of three-dimensional fracture mechanics problems: a two-scale approach using coarse generalized FEM meshes. Int J Numer Methods Eng 81(3): 335–365. doi: 10.1002/nme.2690 zbMATHGoogle Scholar
  22. 22.
    Kruis J, Matous K, Dostal Z (2002) Solving laminated plates by domain decomposition. Adv Eng Softw 33: 445–452zbMATHCrossRefGoogle Scholar
  23. 23.
    Li S, Mear ME, Xiao L (1998) Symmetric weak-form integral equation method for three-dimensional fracture analysis. Comput Methods Appl Mech Eng 151: 435–459MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Melenk JM, Babuška I (1996) The partition of unity finite element method: Basic theory and applications. Comput Methods Appl Mech Eng 139: 289–314zbMATHCrossRefGoogle Scholar
  25. 25.
    Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46: 131–150zbMATHCrossRefGoogle Scholar
  26. 26.
    Oden JT, Patra A, Feng YS (1992) An hp adaptive strategy. In: Noor AK (ed) Adapt Multilevel Hierarchical Comput Strateg. ASME, pp 23–46 (AMD-Vol. 157)Google Scholar
  27. 27.
    Oden JT, Duarte CA, Zienkiewicz OC (1998) A new cloud-based hp finite element method. Comput Methods Appl Mech Eng 153: 117–126MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    O’Hara P, Duarte CA, Eason T (2009) Generalized finite element analysis of three-dimensional heat transfer problems exhibiting sharp thermal gradients. Comput Methods Appl Mech Eng 198(21–26): 1857–1871. doi: 10.1016/j.cma.2008.12.024 CrossRefGoogle Scholar
  29. 29.
    O’Hara P, Duarte CA, Eason T (2010) Transient analysis of sharp thermal gradients using coarse finite element meshes. Comput Methods Appl Mech Eng (submitted for publication)Google Scholar
  30. 30.
    OpenMP. Open multi-processing application programming interface. http://openmp.org/wp/
  31. 31.
    Pereira JP, Duarte CA, Guoy D, Jiao X (2009) Hp-Generalized FEM and crack surface representation for non-planar 3-D cracks. Int J Numer Methods Eng 77(5): 601–633. doi: 10.1002/nme.2419 MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Pereira JP, Duarte CA, Jiao X, Guoy D (2009) Generalized finite element method enrichment functions for curved singularities in 3D fracture mechanics problems. Comput Mech 44(1): 73–92. doi: 10.1007/s00466-008-0356-1 zbMATHCrossRefGoogle Scholar
  33. 33.
    Quinn MJ (2004) Parallel programming in C with MPI and OpenMP. McGraw-Hill, New YorkGoogle Scholar
  34. 34.
    Raju JC, Newman IS Jr (1977) Three dimensional finite-element analysis of finite-thickness fracture specimens. Report TN D-8414, NASA-Langley Research Center, Hampton, VA, pp 1–40Google Scholar
  35. 35.
    Strouboulis T, Copps K, Babuška I (2001) The generalized finite element method. Comput Methods Appl Mech Eng 190: 4081–4193zbMATHCrossRefGoogle Scholar
  36. 36.
    Sukumar N, Moës N, Moran B, Belytschko T (2000) Extended finite element method for three-dimensional crack modelling. Int J Numer Methods Eng 48(11): 1549–1570zbMATHCrossRefGoogle Scholar
  37. 37.
    Top 500 supercomputer sites. November 2007 list. http://www.top500.org/list/2007/11/100
  38. 38.
    Ural A, Heber G, Wawrzynek P, Ingraffea A, Lewicki D, Neto J (2005) Three-dimensional, parallel, finite element simulation of fatigue crack growth in a spiral bevel pinion gear. Eng Fract Mech 72: 1148–1170CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Architectural EngineeringKyung Hee UniversityYonginKorea
  2. 2.Department of Civil and Environmental EngineeringUniversity of Illinois at Urbana-Champaign, Newmark LaboratoryUrbanaUSA

Personalised recommendations