Computational Mechanics

, Volume 47, Issue 3, pp 305–323 | Cite as

Nonlinear fluid–structure interaction problem. Part I: implicit partitioned algorithm, nonlinear stability proof and validation examples

  • Christophe Kassiotis
  • Adnan Ibrahimbegovic
  • Rainer Niekamp
  • Hermann G. Matthies
Original Paper


In this work we consider the fluid-structure interaction in fully nonlinear setting, where different space discretization can be used. The model problem considers finite elements for structure and finite volume for fluid. The computations for such interaction problem are performed by implicit schemes, and the partitioned algorithm separating fluid from structural iterations. The formal proof is given to find the condition for convergence of this iterative procedure in the fully nonlinear setting. Several validation examples are shown to confirm the proposed convergence criteria of partitioned algorithm. The proposed strategy provides a very suitable basics for code-coupling implementation as discussed in Part II.


Fluid–structure interaction Partitioned iterations Nonlinear stability proof 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold M (2001) Constraint partitioning in dynamic iteration methods. Z Angew Math Mech 81: 735–738MATHGoogle Scholar
  2. 2.
    Arnold M, Gunther M (2001) Preconditioned dynamic iteration for coupled differential-algebraic systems. BIT Numer Math 41: 1–25MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Barcelos M, Bavestrello H, Maute K (2006) A Schur–Newton–Krylov solver for steady-state aeroelastic analysis and design sensitivity analysis. Comput Methods Appl Mech Eng 195: 2050–2069MATHCrossRefGoogle Scholar
  4. 4.
    Bathe K-J, Zhang H (2009) A mesh adaptivity procedure for CFD and fluid-structure interactions. Comput Struct 87(11–12): 604–617CrossRefGoogle Scholar
  5. 5.
    Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-stucture interaction: theory, algorithms and computations. Comput Mech 43: 3–37MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid-structure interaction analysis of thoraci aortic blood flow due to implation of the jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198: 3534–3550MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45: 77–89MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Bazilevs Y, Hsu M-C, Zhang Y, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid-structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9: 481–498CrossRefGoogle Scholar
  10. 10.
    Belytschko T, Yen HJ, Mullen R (1979) Mixed methods for time integration. Comput Methods Appl Mech Eng 17(18): 259–275CrossRefGoogle Scholar
  11. 11.
    Belytschko T (1983) An overview of semidiscretization and time integration procedures. In: Belytschko T, Hughes TJR (eds) Computational methods for transient analysis. North-Holland, Amsterdam, pp 1–65Google Scholar
  12. 12.
    Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New YorkMATHGoogle Scholar
  13. 13.
    Brenan KE, Campbell SLV, Petzold LR (1996) Numerical solution of initial-value problems in differential-algebraic equations. Society for Industrial and Applied Mathematics, PhiladelphiaMATHGoogle Scholar
  14. 14.
    Bruneau C-H, Saad M (2006) The 2D lid-driven cavity problem revisited. Comput Fluids 35: 326–348MATHCrossRefGoogle Scholar
  15. 15.
    Causin P, Gerbeau J-F, Nobile F (2005) Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput Methods Appl Mech Eng 194(42–44): 4506–4527MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Degroote J, Bathe K-J, Vierendeels J (2009) Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction. Comput Struct 87(11–12): 793–801CrossRefGoogle Scholar
  17. 17.
    Demirdžić I, Perić M (1988) Space conservation law in finite volume calculations of fluid flow. Int J Numer Methods Fluids 8(9): 1037–1050MATHCrossRefGoogle Scholar
  18. 18.
    Deparis S, Discacciati M, Fourestey G, Quarteroni A (2006) Fluid-structure algorithms based on Steklov-Poincaré operators. Comput Methods Appl Mech Eng 195(41–43): 5797–5812MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Dettmer WG, Perić D (2007) A fully implicit computational strategy for strongly coupled fluid-solid interaction. Arch Comput Methods Eng 14: 205–247MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Deuflhard P, Hairer E, Zugck J (1987) One-step and extrapolation methods for differential-algebraic systems. Numer Math 51: 501–516MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Farhat C, Lesoinne M (2000) Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems. Comput Methods Appl Mech Eng 182: 499–515MATHCrossRefGoogle Scholar
  22. 22.
    Farhat C, Lesoinne M, Maman N (1995) Mixed explicit/implicit time integration of coupled aeroelastic problems: three-field formulation, geometric conservation and distributed solution. Int J Numer Methods Eng 21(10): 356–367MathSciNetGoogle Scholar
  23. 23.
    Felippa CA, Park KC (2004) Synthesis tools for structural dynamics and partitioned analysis of coupled systems. In: Ibrahimbegović A, Brank B (eds) NATO advanced research workshop. IOS Press, The Netherlands, pp 50–111Google Scholar
  24. 24.
    Felippa CA, Park KC, de Runtz JA (1977) Stabilization of staggered solution procedures for fluid-structure interaction analysis. In: Computational methods for fluid-structure interaction problems, pp 95–124Google Scholar
  25. 25.
    Fernández MÁ, Gerbeau J-F, Gloria A, Vidrascu M (2008) Domain decomposition based Newton methods for fluid-structure interaction problems. In: ESAIM: proceedings, vol 22, pp 67–82.
  26. 26.
    Fernández MÁ, Moubachir M (2005) A Newton method using exact Jacobians for solving fluid–structure coupling. Comput Struct 83(2–3): 127–142CrossRefGoogle Scholar
  27. 27.
    Ferziger JH, Perić M (2002) Computational methods for fluid dynamics, 3rd edn. Springler, BerlinMATHGoogle Scholar
  28. 28.
    Förster C, Wall WA, Ramm E (2006) On the geometric conservation law in transient ow calculations on deforming domains. Int J Numer Methods Fluids 50: 1369–1379MATHCrossRefGoogle Scholar
  29. 29.
    Förster C, Wall WA, Ramm E (2007) Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput Methods Appl Mech Eng 196: 1278–1291MATHCrossRefGoogle Scholar
  30. 30.
    Franca LP, Hughes TJR, Stenberg R (1993) Stabilized finite element methods. In: Incompressible computational fluid dynamics, pp 87–107Google Scholar
  31. 31.
    Gerbeau JF, Vidrascu M (2003) A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows. Math Model Numer Anal 37(4): 631–647MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Ghia U, Ghia KN, Shin CT (1982) High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J Comput Phys 48: 387–411MATHCrossRefGoogle Scholar
  33. 33.
    Heil M (2004) An efficient solver for the fully coupled solution of large-displacement fluid–structure interaction problems. Comput Methods Appl Mech Eng 193(1–2): 1–23MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Hortmann M, Perić M, Scheuerer G (1990) Finite volume multigrid prediction of laminar natural convection: bench-mark solutions. Int J Numer Methods Fluids 11: 189–207MATHCrossRefGoogle Scholar
  35. 35.
    Hübner B, Walhorn E, Dinkler D (2004) A monolithic approach to fluid-structure interaction using space-time finite elements. Comput Methods Appl Mech Eng 193: 2087–2104MATHCrossRefGoogle Scholar
  36. 36.
    Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian-Eulerian finite element formulation from incompressible viscous flows. In: Interdisciplinary finite element analysis: proceedings of the US-Japan Seminar Held at Cornell University, p 179. College of Engineering and School of Civil and Environmental Engineering of Cornell UniversityGoogle Scholar
  37. 37.
    Hughes TJR, Pister KS, Taylor RL (1979) Implicit-explicit finite elements in nonlinear transient analysis. Comput Methods Appl Mech Eng 17: 159–182CrossRefGoogle Scholar
  38. 38.
    Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška–Brezzi condition: A stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59: 85–99MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Ibrahimbegovic A (2009) Nonlinear solid mechanics: theoretical formulations and finite element solution methods. Springer, BerlinMATHGoogle Scholar
  40. 40.
    Ibrahimbegovic A, Brank B (2005) Engineering structures under extreme conditions: multi-physics and multi-scale computer models in non-linear analysis and optimal design. IOS Press, The NetherlandsGoogle Scholar
  41. 41.
    Ibrahimbegovic Z, Mamouri S (2002) Energy conserving and decaying implicit time-stepping scheme for nonlinear dynamics of three-dimensional beams undergoing finite rotations. Comput Methods Appl Mech Eng 191: 4241–4258MATHCrossRefGoogle Scholar
  42. 42.
    Joosten M, Dettmer WG, Perić D (2009) Analysis of the block Gauss-Seidel solution procedure for a strongly coupled model problem with reference to fluid-structure interaction. Int J Numer Methods Eng 78(7): 757–778MATHCrossRefGoogle Scholar
  43. 43.
    Kassiotis C, Colliat J-B, Ibrahimbegovic A, Matthies HG (2009) Multiscale in time and stability analysis of operator split solution procedure applied to thermomechanical problems. Eng Comput 1–2: 205–223Google Scholar
  44. 44.
    Kassiotis C, Ibrahimbegovic A, Matthies HG, Brank B (2010) Stable splitting scheme for general form of associated plasticity including different scales of space and time. Comput Methods Appl Mech Eng 199: 1254–1264MathSciNetCrossRefGoogle Scholar
  45. 45.
    Küttler U, Förster C, Wall WA (2006) A solution for the incompressibility dilemma in partitioned fluid-structure interaction with pure Dirichlet fluid domains. Comput Mech 38: 417–429MATHCrossRefGoogle Scholar
  46. 46.
    Küttler U, Wall WA (2008) Fixed-point fluid-structure interaction solvers with dynamic relaxation. Comput Mech 43(1): 61–72MATHCrossRefGoogle Scholar
  47. 47.
    Le Tallec P, Mouro J (2001) Fluid structure interaction with large structural displacements. Comput Methods Appl Mech Eng 190(24–25): 3039–3067MATHCrossRefGoogle Scholar
  48. 48.
    Legay A, Chessa J, Belytschko T (2006) An Eulerian-Lagrangian method for fluid-structure interaction based on level sets. Comput Methods Appl Mech Eng 195(17–18): 2070–2087MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Matthies HG, Niekamp R, Steindorf J (2006) Algorithms for strong coupling procedures. Comput Methods Appl Mech Eng 195: 2028–2049MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Matthies HG, Steindorf J (2003) Partitioned strong coupling algorithms for fluid-structure interaction. Comput Struct 81: 805–812CrossRefGoogle Scholar
  51. 51.
    Mehl M, Brenk M, Bungartz HJ, Daubner K, Muntean IL, Neckel T (2008) An Eulerian approach for partitioned fluid-structure simulations on Cartesian grids. Comput Mech 43(1): 115–124MATHCrossRefGoogle Scholar
  52. 52.
    Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows—fluid-structure interactions. Int J Numer Methods Fluids 21: 933–953MATHCrossRefGoogle Scholar
  53. 53.
    Mok DP, Wall WA, Ramm E (2001) Accelerated iterative substructuring schemes for instationnary fluid-structure interaction. In: First MIT conference computational fluid and solid mechanics. Elsevier, Amsterdam, pp 1325–1328Google Scholar
  54. 54.
    Oden JT, Belytschko T, Babuska I, Hughes TJR (2003) Research directions in computational mechanics. Comput Methods Appl Mech Eng 192(7–8): 913–922MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    OpenCFD LTD. Openfoam home page, 2000–2009.
  56. 56.
    Perić D, Dettmer WG, Saksono PH (2006) Modelling fluid-induced structural vibrations: reducing the structural risk for stormywinds. In: Ibrahimbegovic A (ed) NATO advanced research workshop, ARW 981641, Opatija, Croatia, pp 239–268Google Scholar
  57. 57.
    Piperno S, Farhat C (2001) Partitioned procedures for the transient solution of coupled aeroelastic problems–Part II: energy transfer analysis and three-dimensional applications. Comput Methods Appl Mech Eng 190: 3147–3170MATHCrossRefGoogle Scholar
  58. 58.
    Roshko A (1952) Of the development of turbulent wakes from vortex streets. Ph.D. thesis, California Institute of Technology, Pasadena, CAGoogle Scholar
  59. 59.
    Ross MR, Sprague MA, Felippa CA, Park KC (2009) Treatment of acoustic fluid-structure interaction by localized Lagrange multipliers and comparison to alternative interface-coupling methods. Comput Methods Appl Mech Eng 198(9–12): 986–1005CrossRefGoogle Scholar
  60. 60.
    Schäfer M, Turek S (1996) Benchmark computations of laminar flow around a cylinder. Notes Numer Fluid Mech 52: 547–566Google Scholar
  61. 61.
    Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar T (2010) Wall shear stress calculations in space-time finite element computation of arterial fluid structure interactions. Comput Mech 46(1): 31–41MathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    Tezduyar T, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46(1): 17–29MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95: 221–242MATHCrossRefGoogle Scholar
  64. 64.
    Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195(17–18): 2002–2027MathSciNetMATHCrossRefGoogle Scholar
  65. 65.
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43(1): 39–49MATHCrossRefGoogle Scholar
  66. 66.
    Turek S, Hron J (2006) Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. Lect Notes Comput Sci Eng 53: 371MathSciNetCrossRefGoogle Scholar
  67. 67.
    Wall WA, Mok DP, Ramm E (1999) Partitioned analysis approach of the transient coupled response of viscous fluids and flexible structures. In: Solids, structures and coupled problems in engineering, proceedings of the European conference on computational mechanicsGoogle Scholar
  68. 68.
    Wall WA, Ramm E (1998) Fluid-structure interaction based upon a stabilized (ALE) finite element method. Sonderforschungsbereich 404, Institut für Baustatik und Baudynamik, GermanyGoogle Scholar
  69. 69.
    Wang H, Belytschko T (2009) Fluid-structure interaction by the discontinuous-Galerkin method for large deformations. Int J Numer Methods Eng 77(1): 30–49MathSciNetMATHCrossRefGoogle Scholar
  70. 70.
    Zienkiewicz OC, Taylor RL (2001) The finite element method, solid mechanics, vol 2, 5th edn. Butterworth Heinemann, OxfordGoogle Scholar
  71. 71.
    Zienkiewicz OC, Taylor RL (2001) The finite element method, the basis, vol 1, 5th edn. Butterworth Heinemann, OxfordGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Christophe Kassiotis
    • 1
  • Adnan Ibrahimbegovic
    • 2
  • Rainer Niekamp
    • 3
  • Hermann G. Matthies
    • 3
  1. 1.Saint-Venant Laboratory for HydraulicsUniversité Paris-Est (Joint Research Unit EDF R&D, CETMEF, École des Ponts ParisTech)ChatouFrance
  2. 2.LMT-Cachan (ENS Cachan/CNRS/UPMC/PRES UniverSud Paris)CachanFrance
  3. 3.Institut für Wissenschaftliches Rechnen (TU-Braunschweig)BrunswickGermany

Personalised recommendations