Computational Mechanics

, Volume 47, Issue 3, pp 325–334 | Cite as

Isogeometric analysis of 2D gradient elasticity

  • Paul Fischer
  • Markus Klassen
  • Julia Mergheim
  • Paul Steinmann
  • Ralf Müller
Original Paper

Abstract

In the present contribution the concept of isogeometric analysis is extended towards the numerical solution of the problem of gradient elasticity in two dimensions. In gradient elasticity the strain energy becomes a function of the strain and its derivative. This assumption results in a governing differential equation which contains fourth order derivatives of the displacements. The numerical solution of this equation with a displacement-based finite element method requires the use of C 1-continuous elements, which are mostly limited to two dimensions and simple geometries. This motivates the implementation of the concept of isogeometric analysis for gradient elasticity. This NURBS based interpolation scheme naturally includes C 1 and higher order continuity of the approximation of the displacements and the geometry. The numerical approach is implemented for two-dimensional problems of linear gradient elasticity and its convergence behavior is studied.

Keywords

Gradient elasticity Isogeometric analysis C1-continuous approximation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mechan Anal 16(1): 51–78MathSciNetMATHGoogle Scholar
  2. 2.
    Eringen AC, Suhubi ES (1964) Nonlinear theory of simple microelastic solid—I. Int J Eng Sci 2(2): 189–203MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Toupin RA (1962) Elastic materials with couple stresses. Arch Ration Mech Anal 11: 385–414MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Altan SB, Aifantis EC (1992) On the structure of the mode-III crack-tip in gradient elasticity. Scr Metall 26: 319–324CrossRefGoogle Scholar
  5. 5.
    Aifantis EC (1996) Higher order gradients and size effects. In: Carpinteri A (ed) Size-scale effects in the failure mechanisms of materials and structures. Chapman & Hall, LondonGoogle Scholar
  6. 6.
    Aifantis EC (1999) Strain gradient interpretation of size effects. Int J Fract 95: 299–314CrossRefGoogle Scholar
  7. 7.
    Zhu HT, Zbib HM, Aifantis EC (1997) Strain gradients and continuum modeling of size effect in metal matrix composites. Acta Mech 121: 165–176MATHCrossRefGoogle Scholar
  8. 8.
    Zervos A, Papanicolopulos SA, Vardoulakis I (2009) Two finite-element discretizations for gradient elasticity. J Eng Mech 13(3): 203–213CrossRefGoogle Scholar
  9. 9.
    Papanicolopulos SA, Zervos A, Vardoulakis I (2009) A three-dimensional C 1 finite element for gradient elasticity. Int J Numer Methods Eng 77: 1396–1415MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Fischer P, Mergheim J, Steinmann P (2010) On the C 1 continuous discretization of nonlinear gradient elasticity: a comparison of NEM and FEM based on Bernstein-Bézier patches. Int J Numer Methods Eng 82: 1282–1307MathSciNetMATHGoogle Scholar
  11. 11.
    Askes H, Aifantis EC (2002) Numerical modeling of size effects with gradient elasticity-formulation, meshless discretization and examples. Int J Fract 117: 347–358CrossRefGoogle Scholar
  12. 12.
    Fischer P, Mergheim J, Steinmann P (2010) C 1 discretizations for the application to gradient elasticity. In: Maugin G, Metrikine A (eds) Mechanics of generalized continua. Springer, New York, pp 1–2Google Scholar
  13. 13.
    Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194: 4135–4195MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Bazilevs Y, Barãoda Veiga L, Cottrell JA, Hughes TJR , Sangalli G (2005) Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math Models Methods Appl Sci 16(7): 1031–1090CrossRefGoogle Scholar
  15. 15.
    Cottrell J, Reali A, Bazilevs Y, Hughes TJR (2005) Isogeometric analysis of structural vibrations. Comput Methods Appl Mech Eng 195: 5257–5296MathSciNetCrossRefGoogle Scholar
  16. 16.
    Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Zhang Y, Bazilevs Y, Goswami S, Bajaj CL, Hughes TJR (2005) Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Comput Methods Appl Mech Eng 196: 2943–2959MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gómez H, Calo VM, Bazilevs Y, Hughes TJR (2008) Isogeometric analysis of the Cahn-Hilliard phase-field model. Comput Methods Appl Mech Eng 197: 4333–4352MATHCrossRefGoogle Scholar
  19. 19.
    Auricchio F, Beirao da Veiga L, Buffa A, Lovadina C, Reali A, Sangalli G (2007) A fully “locking-free” isogeometric approach for plane linear elasticity problems: a steam function formulation. Comupt Methods Appl Mech Eng 197: 160–172MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Auricchio F, Beirao da Veiga L, Lovadina C, Reali A (2010) The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEM versus NURBS-based approximations. Comput Methods Appl Mech Eng 199: 314–323MathSciNetCrossRefGoogle Scholar
  21. 21.
    Cox MG (1971) The numerical evaluation of B-splines. Technical report, National Physics Laboratory, DNAC 4Google Scholar
  22. 22.
    De Boor C (1972) On calculation with B-splines. J Approx Theory 6: 50–62MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Piegl L, Tiller W (1997) The NURBS book, 2nd edn. Springer, BerlinGoogle Scholar
  24. 24.
    Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff-Love elements. Comput Methods Appl Mech Eng 198: 3902–3914CrossRefGoogle Scholar
  25. 25.
    Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51: 1477–1508MATHCrossRefGoogle Scholar
  26. 26.
    Fischer P, Mergheim J, Steinmann P (2010) Direct evaluation of nonlinear gradient elasticity in 2D with C 1 continuous discretization methods. PAMM (submitted)Google Scholar
  27. 27.
    Reif U (1993) Neue Aspekte in der Theorie der Freiformflächen beliebiger Topologie. PhD-Thesis, University of StuttgartGoogle Scholar
  28. 28.
    Prautzsch H (1997) Freeform splines. Comput Aided Geom Des 14: 201–206MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199: 2403–2416CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Paul Fischer
    • 2
  • Markus Klassen
    • 1
  • Julia Mergheim
    • 2
  • Paul Steinmann
    • 2
  • Ralf Müller
    • 1
  1. 1.Chair of Applied MechanicsUniversity of KaiserslauternKaiserslauternGermany
  2. 2.Chair of Applied MechanicsUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations