Computational Mechanics

, Volume 47, Issue 2, pp 217–233 | Cite as

An algebraic variational multiscale-multigrid method for large-eddy simulation: generalized-α time integration, Fourier analysis and application to turbulent flow past a square-section cylinder

  • Volker GravemeierEmail author
  • Martin Kronbichler
  • Michael W. Gee
  • Wolfgang A. Wall
Original Paper


This article studies three aspects of the recently proposed algebraic variational multiscale-multigrid method for large-eddy simulation of turbulent flow. First, the method is integrated into a second-order-accurate generalized-α time-stepping scheme. Second, a Fourier analysis of a simplified model problem is performed to assess the impact of scale separation on the overall performance of the method. The analysis reveals that scale separation implemented by projective operators provides modeling effects very close to an ideal small-scale subgrid viscosity, that is, it preserves low frequencies, in contrast to non-projective scale separations. Third, the algebraic variational multiscale-multigrid method is applied to turbulent flow past a square-section cylinder. The computational results obtained with the method reveal, on the one hand, the good accuracy achievable for this challenging test case already at a rather coarse discretization and, on the other hand, the superior computing efficiency, e.g., compared to a traditional dynamic Smagorinsky modeling approach.


Turbulent flow Large-eddy simulation Variational multiscale method Algebraic multigrid Fourier analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hughes TJR, Mazzei L, Jansen KE (2000) Large eddy simulation and the variational multiscale method. Comput Visual Sci 3: 47–59zbMATHCrossRefGoogle Scholar
  2. 2.
    Collis SS (2001) Monitoring unresolved scales in multiscale turbulence modeling. Phys Fluids 13: 1800–1806CrossRefGoogle Scholar
  3. 3.
    Sagaut P (2006) Large eddy simulation for incompressible flows, 3rd edn. Springer, BerlinzbMATHGoogle Scholar
  4. 4.
    John V (2004) Large eddy simulation of turbulent incompressible flows. Springer, BerlinzbMATHGoogle Scholar
  5. 5.
    Berselli LC, Iliescu T, Layton WJ (2006) Mathematics of large eddy simulation of turbulent flows. Springer, BerlinzbMATHGoogle Scholar
  6. 6.
    Moin P (2002) Advances in large eddy simulation methodology for complex flows. Int J Heat Fluid Flow 23: 710–720CrossRefGoogle Scholar
  7. 7.
    Gravemeier V (2006) The variational multiscale method for laminar and turbulent flow. Arch Comput Meth Eng 13: 249–324zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gravemeier V, Gee MW, Wall WA (2009) An algebraic variational multiscale-multigrid method based on plain aggregation for convection–diffusion problems. Comput Methods Appl Mech Eng 198: 3821–3835CrossRefMathSciNetGoogle Scholar
  9. 9.
    Gravemeier V, Gee MW, Kronbichler M, Wall WA (2010) An algebraic variational multiscale-multigrid method for large eddy simulation of turbulent flow. Comput Methods Appl Mech Eng 199: 853–864zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hackbusch W (1985) Multigrid methods and applications. Computational mathematics, vol. 4. Springer, BerlinGoogle Scholar
  11. 11.
    Briggs WL, Henson VE, McCormick SF (2000) A multigrid tutorial, 2nd edn. SIAM, PhiladelphiazbMATHGoogle Scholar
  12. 12.
    Trottenberg U, Oosterlee C, Schüller A (2001) Multigrid. Elsevier Academic Press, LondonzbMATHGoogle Scholar
  13. 13.
    Lin PT, Sala M, Shadid JN, Tuminaro RS (2006) Performance of fully coupled algebraic multilevel domain decomposition preconditioners for incompressible flow and transport. Int J Numer Methods Eng 67: 208–225zbMATHCrossRefGoogle Scholar
  14. 14.
    Vaněk P, Mandel J, Brezina M (1996) Algebraic multigrid based on smoothed aggregation for second and fourth order problems. Computing 56: 179–196zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Tezduyar TE, Sathe S (2005) Enhanced-discretization successive update method (EDSUM). Int J Numer Methods Fluids 47: 633–654zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Lallemand M-H, Steve H, Dervieux A (1992) Unstructured multigridding by volume agglomeration: current status. Comput Fluids 21: 397–433zbMATHCrossRefGoogle Scholar
  17. 17.
    Mavriplis DJ, Venkatakrishnan V (1996) A 3D agglomeration multigrid solver for the Reynolds-averaged Navier–Stokes equations on unstructured meshes. Int J Numer Methods Fluids 23: 527–544zbMATHCrossRefGoogle Scholar
  18. 18.
    Carre G, Lanteri S (2000) Parallel linear multigrid by agglomeration for the acceleration of 3D compressible flow calculations on unstructured meshes. Num Alg 24: 309–322zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Koobus B, Farhat C (2004) A variational multiscale method for the large eddy simulation of compressible turbulent flows on unstructured meshes: application to vortex shedding. Comput Methods Appl Mech Eng 193: 1367–1383zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Voke PR (1989) Multiple mesh simulation of low Reynolds number turbulent channel flow. In: Taylor C, Gresho PM, Sani R, Hauser J (eds) Numerical methods in laminar and turbulent flow, vol 6. Pineridge Press, Swansea, pp 1567–1577Google Scholar
  21. 21.
    Terracol M, Sagaut P, Basdevant C (2001) A multilevel algorithm for large-eddy simulation of turbulent compressible flows. J Comput Phys 167: 439–474zbMATHCrossRefGoogle Scholar
  22. 22.
    Sagaut P, Deck S, Terracol M (2006) Multiscale and multiresolution approaches in turbulence. Imperial College Press, LondonCrossRefGoogle Scholar
  23. 23.
    Brandt A (1977) Multi-level adaptive solutions to boundary value problems. Math Comput 31: 333–390zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197: 173–201zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Rodi W, Ferziger JH, Breuer M, Pourquie M (1997) Status of large eddy simulation: results of a workshop. ASME J Fluids Eng 119: 248–262CrossRefGoogle Scholar
  26. 26.
    Voke PR (1997) Flow past a square cylinder: test case LES2. In: Chollet J-P, Voke PR, Kleiser L (eds) Direct and large eddy simulation II. Kluwer, Dordrecht, pp 355–374Google Scholar
  27. 27.
    Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194: 4135–4195zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Bazilevs Y, Michler C, Calo VM, Hughes TJR (2010) Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput Methods Appl Mech Eng 199: 780–790zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Hughes TJR, Wells GN (2005) Conservation properties for the Galerkin and stabilised forms of the advection-diffusion and incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 194: 1141–1159zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, New YorkzbMATHGoogle Scholar
  31. 31.
    Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95: 221–242zbMATHCrossRefGoogle Scholar
  32. 32.
    Tezduyar TE (1992) Finite element formulations for incompressible flow computations. Adv Appl Mech 28: 1–44zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accomodating equal-order interpolation. Comput Methods Appl Mech Eng 59: 85–99zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Brooks AN, Hughes TJR (1982) Streamline Upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32: 199–259zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite element computation of 3D flows. Computer 26: 27–36CrossRefGoogle Scholar
  36. 36.
    Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190: 411–430zbMATHCrossRefGoogle Scholar
  37. 37.
    Braack M, Burman E, John V, Lube G (2007) Stabilized finite element methods for the generalized Oseen problem. Comput Methods Appl Mech Eng 196: 853–866zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Prentice-Hall, Englewood CliffszbMATHGoogle Scholar
  39. 39.
    Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199: 828–840zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Smagorinsky J (1963) General circulation experiments with the primitive equations. I. The basic experiment. Mon Weather Rev 91: 99–164CrossRefGoogle Scholar
  42. 42.
    Deardorff JW (1970) A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J Fluid Mech 41: 453–465zbMATHCrossRefGoogle Scholar
  43. 43.
    Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190: 305–319zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-a method. J Appl Mech 60: 371–375zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Whiting CH, Jansen KE (2001) A stabilized finite element method for the incompressible Navier–Stokes equations using a hierarchical basis. Int J Numer Methods Fluids 35: 93–116zbMATHCrossRefGoogle Scholar
  46. 46.
    Gamnitzer P, Gravemeier V, Wall WA (2010) Time-dependent subgrid scales in residual-based large eddy simulation of turbulent channel flow. Comput Methods Appl Mech Eng 199: 819–827zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Vaněk P, Brezina M, Mandel J (2001) Convergence of algebraic multigrid based on smoothed aggregation. Numer Math 88: 559–579zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Gravemeier V (2006) Scale-separating operators for variational multiscale large eddy simulation of turbulent flows. J Comput Phys 212: 400–435zbMATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Gravemeier V (2007) Variational multiscale large-eddy simulation of turbulent flow in a diffuser. Comput Mech 39: 477–495zbMATHCrossRefGoogle Scholar
  50. 50.
    Kronbichler M (2007) Finite-element based variational multiscale methods for large eddy simulation of turbulent flows, Diploma Thesis, Technische Universität MünchenGoogle Scholar
  51. 51.
    Hemker PW (1990) On the order of prolongations and restrictions in multigrid procedures. J Comput Appl Math 32: 423–429zbMATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    John V, Kaya S (2005) A finite element variational multiscale method for the Navier–Stokes equations. SIAM J Sci Comput 26: 1485–1503zbMATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Holmen J, Hughes TJR, Oberai AA, Wells GN (2004) Sensitivity of the scale partition for variational multiscale large-eddy simulation of channel flow. Phys Fluids 16: 824–827CrossRefGoogle Scholar
  54. 54.
    Sohankar A, Davidson L, Norberg C (2000) Large eddy simulation of flow past a square cylinder: comparison of different subgrid scale models. ASME J Fluids Eng 122: 39–47CrossRefGoogle Scholar
  55. 55.
    Fureby C, Tabor G, Weller H, Gosman A (2000) Large eddy simulation of the flow around a square prism. AIAA J 38: 442–452CrossRefGoogle Scholar
  56. 56.
    Lee BE (1975) The effect of turbulence on the surface pressure field of square prisms. J Fluid Mech 69: 263–282CrossRefGoogle Scholar
  57. 57.
    Bearman P, Obasaju E (1982) An experimental study of pressure fluctuations on fixed and oscillating square-section cylinders. J Fluid Mech 119: 279–321CrossRefGoogle Scholar
  58. 58.
    McLean I, Gartshore C (1992) Spanwise correlations of pressure on a rigid square section cylinder. J Wind Eng Ind Aerodyn 41: 797–808CrossRefGoogle Scholar
  59. 59.
    Norberg C (1993) Flow around rectangular cylinders: pressure forces and wake frequencies. J Wind Eng Ind Aerodyn 49: 187–196CrossRefGoogle Scholar
  60. 60.
    Luo SC, Yazdani MdG, Chew YT, Lee TS (1994) Effects of incidence and afterbody shape on flow past bluff cylinders. J Wind Eng Ind Aerodyn 53: 375–399CrossRefGoogle Scholar
  61. 61.
    Lyn DA, Rodi W (1994) The flapping shear layer formed by flow separation from the forward corner of a square cylinder. J Fluid Mech 267: 353–376CrossRefGoogle Scholar
  62. 62.
    Lyn DA, Einav S, Rodi W, Park J-H (1995) A laser-doppler-velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder. J Fluid Mech 304: 285–319CrossRefGoogle Scholar
  63. 63.
    Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3: 1760–1765zbMATHCrossRefGoogle Scholar
  64. 64.
    Lilly DK (1992) A proposed modification of the Germano subgrid-scale closure method. Phys Fluids A 4: 633–635CrossRefGoogle Scholar
  65. 65.
    Jansen KE (1999) A stabilized finite element method for computing turbulence. Comput Methods Appl Mech Eng 174: 299–317zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Volker Gravemeier
    • 1
    • 2
    Email author
  • Martin Kronbichler
    • 3
  • Michael W. Gee
    • 2
  • Wolfgang A. Wall
    • 2
  1. 1.Emmy Noether Research Group “Computational Multiscale Methods for Turbulent Combustion”Technische Universität MünchenGarchingGermany
  2. 2.Institute for Computational MechanicsTechnische Universität MünchenGarchingGermany
  3. 3.Division of Scientific ComputingUppsala UniversitetUppsalaSweden

Personalised recommendations