Computational Mechanics

, Volume 46, Issue 5, pp 679–701 | Cite as

A node-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner–Mindlin plates

  • H. Nguyen-Xuan
  • T. Rabczuk
  • N. Nguyen-Thanh
  • T. Nguyen-Thoi
  • S. Bordas
Original Paper

Abstract

In this paper, a node-based smoothed finite element method (NS-FEM) using 3-node triangular elements is formulated for static, free vibration and buckling analyses of Reissner–Mindlin plates. The discrete weak form of the NS-FEM is obtained based on the strain smoothing technique over smoothing domains associated with the nodes of the elements. The discrete shear gap (DSG) method together with a stabilization technique is incorporated into the NS-FEM to eliminate transverse shear locking and to maintain stability of the present formulation. A so-called node-based smoothed stabilized discrete shear gap method (NS-DSG) is then proposed. Several numerical examples are used to illustrate the accuracy and effectiveness of the present method.

Keywords

Plate bending Transverse shear locking Finite element method Node-based smoothed finite element Discrete shear gap (DSG) Stabilization technique 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leissa AW (1987) Plate vibration research: 1981–1985: classical theory. Shock Vib Dig 19: 11–18CrossRefGoogle Scholar
  2. 2.
    Leissa AW (1987) A review of laminated composite plate buckling. Appl Mech Rev 40: 575–591CrossRefGoogle Scholar
  3. 3.
    Liew KM, Xiang Y, Kitipornchai S (1995) Research on thick plate vibration: a literature survey. J Sound Vib 180: 163–176CrossRefGoogle Scholar
  4. 4.
    Mackerle J (1997) Finite element linear and nonlinear, static and dynamic analysis of structural elements: a bibliography (1992–1995). Eng Comput 14: 347–440MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Mackerle J (2002) Finite element linear and nonlinear, static and dynamic analysis of structural elements: a bibliography (1999–2002). Eng Comput 19: 520–594MATHCrossRefGoogle Scholar
  6. 6.
    Zienkiewicz OC, Lefebvre D (1988) A robust triangular plate bending element of the ReissnerMindlin type. Int J Numer Methods Eng 26: 1169–1184MATHCrossRefGoogle Scholar
  7. 7.
    Ayad R, Dhatt G, Batoz JL (1998) A new hybrid-mixed variational approach for ReissnerMindlin plate. Int J Numer Methods Eng 42: 1149–1179MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lovadina C (1998) Analysis of a mixed finite element method for the ReissnerMindlin plate problems. Comput Methods Appl Mech Eng 163: 71–85MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Taylor RL, Auricchio F (1993) Linked interpolation for Reissner–Mindlin plate element: Part II-A simple triangle. Int J Numer Methods Eng 36: 3043–3056CrossRefGoogle Scholar
  10. 10.
    Belytschko T, Tsay CS (1983) A stabilization procedure for the quadrilateral plate element with one-point quadrature. Int J Numer Meth Eng 19: 405–419MATHCrossRefGoogle Scholar
  11. 11.
    Belytschko T, Leviathan I (1992) Physical stabilization of the 4-node shell element with one-point quadrature. Comput Meth Appl Mech Eng 113: 321–350CrossRefGoogle Scholar
  12. 12.
    Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29: 1595–1638MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    César de Sá JMA, Natal Jorge RM (1999) New enhanced strain elements for incompatible problems. Int J Numer Methods Eng 44: 229–248MATHCrossRefGoogle Scholar
  14. 14.
    Bathe KJ, Dvorkin EN (1985) A four-node plate bending element based on Mindlin–Reissener plate theory and a mixed interpolation. Int J Numer Methods Eng 21: 367–383MATHCrossRefGoogle Scholar
  15. 15.
    Tessler A, Hughes TJR (1985) A three-node Mindlin plate element with improved transverse shear. Comput Methods Appl Mech Eng 50: 71–101MATHCrossRefGoogle Scholar
  16. 16.
    César de Sá JMA, Natal Jorge RM, Fontes Valente RA, Areias PMA (2002) Development of shear locking-free shell elements using an enhanced assumed strain formulation. Int J Numer Methods Eng 53: 1721–1750MATHCrossRefGoogle Scholar
  17. 17.
    Cardoso RPR, Yoon JW, Mahardika M, Choudhry S, Alvesde Sousa RJ, Fontes Valente RA (2008) Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one-point quadrature solid-shell elements. Int J Numer Methods Eng 75: 156–187CrossRefMathSciNetGoogle Scholar
  18. 18.
    Bletzinger KU, Bischoff M, Ramm E (2000) A unified approach for shear-locking free triangular and rectangular shell finite elements. Int J Numer Methods Eng 75: 321–334Google Scholar
  19. 19.
    Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50: 435–466MATHCrossRefGoogle Scholar
  20. 20.
    Rabczuk T, Belytschko T, Xiao SP (2004) Stable particle methods based on lagrangian kernels. Comput Methods Appl Mech Eng 193: 1035–1063MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Rabczuk T, Belytschko T (2005) Adaptivity for structured meshfree particle methods in 2D and 3D. Int J Numer Methods Engineering 63(11): 1559–1582MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Engineering 61(13): 2316–2343MATHCrossRefGoogle Scholar
  23. 23.
    Rabczuk T, Belytschko T (2007) A three dimensional large deformation meshfree method for arbitrary evolving cracks. Comput Methods Appl Mech Eng 196(29–30): 2777–2799MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Rabczuk T, Belytschko T (2006) Application of meshfree particle methods to static fracture of reinforced concrete structures. Int J Fract 137(1-4): 19–49CrossRefGoogle Scholar
  25. 25.
    Rabczuk T, Areias PMA, Belytschko T (2007) A simplified meshfree method for shear bands with cohesive surfaces. Int J Numer Methods Eng 69(5): 993–1021CrossRefMathSciNetGoogle Scholar
  26. 26.
    Rabczuk T, Bordas S, Zi G (2007) A three dimensional meshfree method for static and dynamic multiple crack nucleation/propagation with crack path continuity. Comput Mech 40(3): 473–495MATHCrossRefGoogle Scholar
  27. 27.
    Rabczuk T, Zi G (2007) A meshfree method based on the local partition of unity for cohesive cracks. Comput Mech 39(6): 743–760MATHCrossRefGoogle Scholar
  28. 28.
    Liu GR, Dai KY, Nguyen TT (2007) A smoothed element method for mechanics problems. Comput Mech 39: 859–877MATHCrossRefGoogle Scholar
  29. 29.
    Liu GR, Nguyen TT, Dai KY, Lam KY (2007) Theoretical aspects of the smoothed finite element method (SFEM). Int J Numer Methods Eng 71: 902–930CrossRefMathSciNetGoogle Scholar
  30. 30.
    Liu GR, Nguyen-Thoi T, Nguyen-Xuan H, Dai KY, Lam KY (2009) On the essence and the evaluation of the shape functions for the smoothed finite element method (sfem) (letter to editor). Int J Numer Methods Eng 77: 1863–1869MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Nguyen-Xuan H, Bordas S, Nguyen-Dang H (2008) Smooth finite element methods: convergence, accuracy and properties. Int J Numer Methods Eng 74: 175–208MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Liu GR, Nguyen-Xuan H, Nguyen-Thoi T (2010) A theoretical study on NS/ES-FEM: properties, accuracy and convergence rates. Int J Numer Methods Eng (in press). doi:10.1002/nme.2941
  33. 33.
    Dai KY, Liu GR, Nguyen TT (2007) An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics. Finite Elements Anal Des 43: 847–860CrossRefMathSciNetGoogle Scholar
  34. 34.
    Dai KY, Liu GR (2007) Free and forced vibration analysis using the smoothed finite element method (SFEM). J Sound Vib 301: 803–820CrossRefGoogle Scholar
  35. 35.
    Nguyen-Xuan H, Nguyen-Thoi T (2008) A stabilized smoothed finite element method for free vibration analysis of Mindlin– Reissner plates. Commun Numer Methods Eng (in press). doi:10.1002/cnm.1137
  36. 36.
    Nguyen-Xuan H, Rabczuk T, Bordas S, Debongnie JF (2008) A smoothed finite element method for plate analysis. Comput Methods Appl Mech Eng 197: 1184–1203MATHCrossRefGoogle Scholar
  37. 37.
    Nguyen-Thanh N, Rabczuk T, Nguyen-Xuan H, Bordas S (2008) A smoothed finite element method for shell analysis. Comput Methods Appl Mech Eng 198: 165–177Google Scholar
  38. 38.
    Le CV, Nguyen-Xuan H, Askes H, Bordas S, Rabczuk T, Nguyen-Vinh H (2010) A cell-based smoothed finite element method for kinematic limit analysis. Int J Numer Methods Eng (in press). doi:10.1002/nme.2897
  39. 39.
    Bordas S, Rabczuk T, Nguyen-Xuan H, Nguyen Vinh P, Natarajan S, Bog T, Do Minh Q, Nguyen Vinh H (2008) Strain smoothing in FEM and XFEM. Comput Struct (in press). doi:10.1016/j.compstruc.2008.07.006
  40. 40.
    Liu GR (2010) A G space theory and a weakened weak (W 2) form for a unified formulation of compatible and incompatible methods: Part I theory and Part II applications to solid mechanics problems. Int J Numer Methods Eng 81:1093–1156Google Scholar
  41. 41.
    Liu GR (2008) A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods. Int J Comput Methods 2: 199–236CrossRefGoogle Scholar
  42. 42.
    Liu GR, Nguyen-Thoi T, Nguyen-Xuan H, Lam KY (2009) A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems. Comput Struct 87: 14–26CrossRefGoogle Scholar
  43. 43.
    Nguyen-Thoi T, Liu GR, Nguyen-Xuan H (2009) Additional properties of the node-based smoothed finite element method (NS-FEM) for solid mechanics problems. Int J Comput Methods 6: 633–666CrossRefMathSciNetGoogle Scholar
  44. 44.
    Liu GR, Nguyen-Thoi T, Lam KY (2009) An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. J Sound Vib 320: 1100–1130CrossRefGoogle Scholar
  45. 45.
    Nguyen-Xuan H, Liu GR, Nguyen-Thoi T, Nguyen-Tran C (2009) An edge-based smoothed finite element method (ES-FEM) for analysis of two-dimensional piezoelectric structures. Smart Mater Struct 18: 065015CrossRefGoogle Scholar
  46. 46.
    Nguyen-Xuan H, Liu GR, Thai-Hoang C, Nguyen-Thoi T (2010) An edge-based smoothed finite element method (ES-FEM) with stabilized discrete shear gap technique for analysis of Reissner–Mindlin plates. Comput Methods Appl Mech Eng 199: 471–489CrossRefMathSciNetGoogle Scholar
  47. 47.
    Nguyen-Thoi T, Liu GR, Vu-Do HC, Nguyen-Xuan H (2009) An edge-based smoothed finite element method (ES-FEM) for visco-elastoplastic analyses in 2d solids using triangular mesh. Comput Mech 45: 23–44MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Tran TN, Liu GR, Nguyen-Xuan H, Nguyen-Thoi T (2010) An edge-based smoothed finite element method for primal-dual shakedown analysis of structures. Int J Numer Methods Eng 82: 917–938MATHGoogle Scholar
  49. 49.
    Cui X, Liu GR, Li G, Zhang GY, Zheng G (2010) Analysis of plates and shells using an edge-based smoothed finite element method. Comput Mech 45: 141–156MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Nguyen-Thoi T, Liu GR, Lam KY, Zhang GY (2009) A face-based smoothed finite element method (FS-FEM) for 3d linear and nonlinear solid mechanics problems using 4-node tetrahedral elements. Int J Numer Methods Eng 78: 324–353MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Nguyen-Thoi T, Liu GR, Vu-Do HC, Nguyen-Xuan H (2009) A face-based smoothed finite element method (FS-FEM) for visco- elastoplastic analyses of 3d solids using tetrahedral mesh. Computer Methods in Applied Mechanics and Engineering 198: 3479–3498CrossRefGoogle Scholar
  52. 52.
    Nguyen-Thoi T, Liu GR, Nguyen-Xuan H, Nguyen-Tran C (2009) Adaptive analysis using the node-based smoothed finite element method (NS-FEM). Commun Numer Methods Eng (in press). doi:10.1002/cnm.1291
  53. 53.
    Zhang ZQ, Liu GR (2010) Temporal stabilization of the node-based smoothed finite element method (NS-FEM) and solution bound of linear elastostatics and vibration problems. Comput Mech (in press). doi:10.1007/s00466-009-0420-5
  54. 54.
    Liu GR, Nguyen-Thoi T, Lam KY (2008) A novel alpha finite element method (αFEM) for exact solution to mechanics problems using triangular and tetrahedral elements. Comput Methods Appl Mech Eng 197: 3883–3897CrossRefMathSciNetGoogle Scholar
  55. 55.
    Liu GR, Nguyen-Xuan H, Nguyen-Thoi T, Xu X (2009) A novel Galerkin-like weakform and a superconvergent alpha finite element method (SαFEM) for mechanics problems using triangular meshes. J Comput Phys 228: 4055–4087MATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Nguyen-Thanh N, Rabczuk T, Nguyen-Xuan H, Bordas S (2010) An alternative alpha finite element method (Aαfem) free and forced vibration analysis of solids using triangular meshes. J Comput Appl Math 223(9): 2112–2135CrossRefMathSciNetGoogle Scholar
  57. 57.
    Thompson LL (2003) On optimal stabilized mitc4 plate bending elements for accurate frequency response analysis. Comput Struct 81: 995–1008CrossRefGoogle Scholar
  58. 58.
    Liew KM, Wang J, Ng TY, Tan MJ (2004) Free vibration and buckling analyses of shear-deformable plates based on FSDT meshfree method. J Sound Vib 276: 997–1017CrossRefGoogle Scholar
  59. 59.
    Lyly M, Stenberg R, Vihinen T (1993) A stable bilinear element for the Rissnerindlin plate model. Comput Methods Appl Mech Eng 110: 343–357MATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    Bischoff M, Bletzinger KU (2001) Stabilized dsg plate and shell elements. Trends in computational structural mechanics, CIMNE, Barcelona, SpainGoogle Scholar
  61. 61.
    Bonet J, Burton AJ (1998) A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications. Commun Numer Methods Eng 14: 437–449MATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    Dohrmann CR, Heinstein MW, Jung J, Key SW, Witkowski WW (2000) Node-based uniform strain elements for three-node triangular and four-node tetrahedral meshes. Int J Numer Methods Eng 47: 1549–1568MATHCrossRefGoogle Scholar
  63. 63.
    Bonet J, Marriott H, Hassan O (2001) An averaged nodal deformation gradient linear tetrahedral element for large strain explicit dynamic applications. Commun Numer Methods Eng 17: 551–561MATHCrossRefGoogle Scholar
  64. 64.
    Pires FMA, Neto EAD, Padilla JLD (2004) An assessment of the average nodal volume formulation for the analysis of nearly incompressible solids under finite strains. Commun Numer Methods Eng 20: 569–583MATHCrossRefGoogle Scholar
  65. 65.
    Puso MA, Solberg J (2006) A stabilized nodally integrated tetrahedral. International Journal for Numerical Methods in Engineering 67: 841–867MATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    Gee MW, Dohrmann CR, Key SW, Wall WA (2008) A uniform nodal strain tetrahedron with isochoric stabilization. Int J Numer Methods Eng 78: 429–443CrossRefMathSciNetGoogle Scholar
  67. 67.
    Krysl P, Zhu B (2008) Locking-free continuum displacement finite elements with nodal integration International. J Numer Methods Eng 76: 1020–1043CrossRefMathSciNetGoogle Scholar
  68. 68.
    Castellazzi G, Krysl P (2009) Displacement-based finite elements with nodal integration for Reissner–Mindlin plates. Int J Numer Methods Eng 80: 135–162MATHCrossRefMathSciNetGoogle Scholar
  69. 69.
    Zienkiewicz OC, Xu Z, Zeng LX, Samuelsson A, Wiberg NE (1993) Linked interpolation for Reissner–Mindlin plate elements: part I-a simple quadrilateral. Int J Numer Methods Eng 36: 3043–3056MATHCrossRefGoogle Scholar
  70. 70.
    Katili I (1993) A new discrete Kirchhoff–Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-part II: an extended DKQ element for thick-plate bending analysis. Int J Numer Methods Eng 36: 1885–1908MATHCrossRefGoogle Scholar
  71. 71.
    Lee SJ (2004) Free vibration analysis of plates by using a four-node finite element formulated with assumed natural transverse shear strain. J Sound Vib 278: 657–684CrossRefGoogle Scholar
  72. 72.
    Lee SJ, Han SE (2001) Free-vibration analysis of plates and shells with a nine-node assumed natural degenerated shell element. J Sound Vib 241: 605–633CrossRefGoogle Scholar
  73. 73.
    Liew KM, Chen XL (2004) Buckling of rectangular Mindlin plates subjected to partial in-plane edge loads using the radial point interpolation method. Int J Solids Struct 41: 1677–1695MATHCrossRefGoogle Scholar
  74. 74.
    Karunasena W, Kitipornchai S, Al-bermani FGA (1996) Free vibration of cantilevered arbitrary triangular mindlin plates. Int J Mech Sci 38: 431–442MATHCrossRefGoogle Scholar
  75. 75.
    Morley LSD (1963) Skew plates and structures. Pergamon Press, NYMATHGoogle Scholar
  76. 76.
    Abbassian F, Dawswell DJ, Knowles NC (1987) Free vibration benchmarks. Technical report Softback, 40 pp, Atkins Engineering Sciences, Glasgow, UKGoogle Scholar
  77. 77.
    Leissa AW (1969) Vibration of plates. NASA, SP-160. Washington, DCGoogle Scholar
  78. 78.
    Irie T, Yamada G, Aomura S (1980) Natural frequencies of mindlin circular plates. Appl Mech 47: 652–655MATHCrossRefGoogle Scholar
  79. 79.
    McGee OG, Leissa AW, Huang CS (1992) Vibrations of cantilevered skewed trapezodial and triangular plates with corner stress singularities. Mech Sci 34: 63–84CrossRefGoogle Scholar
  80. 80.
    Timoshenko SP, Gere JM (1970) Theory of elastic stability, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  81. 81.
    Kitipornchai S, Xiang Y, Wang CM, Liew KM (1993) Buckling of thick skew plates. Int J Numer Methods Eng 36: 1299–1310MATHCrossRefGoogle Scholar
  82. 82.
    Tham LG, Szeto HY (1990) Buckling analysis of arbitrary shaped plates by spline finite strip method. Comput Struct 36: 729–735CrossRefGoogle Scholar
  83. 83.
    Azhari M, Hoshdar S, Bradford MA (2000) On the use of bubble functions in the local buckling analysis of plate structures by the spline finite strip method. Int J Numer Methods Eng 48: 583–593MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • H. Nguyen-Xuan
    • 1
    • 2
  • T. Rabczuk
    • 3
  • N. Nguyen-Thanh
    • 3
  • T. Nguyen-Thoi
    • 1
    • 2
  • S. Bordas
    • 4
  1. 1.Department of Mechanics, Faculty of Mathematics and Computer ScienceUniversity of Science, Vietnam National University, HCMHo Chi Minh CityVietnam
  2. 2.Division of Computational Mechanics, Faculty of Civil EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Institute of Structural Mechanics (ISM)Bauhaus-University WeimarWeimarGermany
  4. 4.School of Engineering, Institute of Theoretical, Applied and Computational MechanicsCardiff UniversityWalesUK

Personalised recommendations