Advertisement

Computational Mechanics

, Volume 46, Issue 4, pp 621–633 | Cite as

A scalable time–space multiscale domain decomposition method: adaptive time scale separation

  • J.-C. Passieux
  • P. Ladevèze
  • D. Néron
Original Paper

Abstract

This paper deals with the scalability of a time–space multiscale domain decomposition method in the framework of time-dependent nonlinear problems. The strategy which is being studied is the multiscale LATIN method, whose scalability was shown in previous works when the distinction between macro and micro parts is made on the spatial level alone. The objective of this work is to propose an explanation of the loss-of-scalability phenomenon, along with a remedy which guarantees full scalability provided a suitable macro time part is chosen. This technique, which is quite general, is based on an adaptive separation of scales which is achieved by adding the most relevant functions to the temporal macrobasis automatically. When this method is used, the numerical scalability of the strategy is confirmed by the examples presented.

Keywords

Scalability Multiscale in time and space Domain decomposition Parallel computing Model reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alart P, Dureisseix D (2008) A scalable multiscale LATIN method adapted to nonsmooth discrete media. Comput Methods Appl Mech Eng 197: 319–331MATHCrossRefGoogle Scholar
  2. 2.
    Belytschko T, Smolinski P, Liu WK (1985) Stability of multi-time step partitioned integrators for first-order finite element systems. Comput Methods Appl Mech Eng 49(3): 281–297MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ben Dhia H, Rateau G (2005) The Arlequin method as a flexible engineering design tool. Int J Numer Methods Eng 62: 1442–1462MATHCrossRefGoogle Scholar
  4. 4.
    Bottasso CL (2002) Multiscale temporal integration. Comput Methods Appl Mech Eng 191(25–26): 2815–2830MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Boucard P-A, Champaney L (2003) A suitable computational strategy for the parametric analysis of problems with multiple contact. Int J Numer Methods Eng 57: 1259–1282MATHCrossRefGoogle Scholar
  6. 6.
    Briggs WL (1987) A multigrid tutorial. Society for industrial and applied mathematicsGoogle Scholar
  7. 7.
    Chatterjee A (2000) An introduction to the proper orthogonal decomposition. Curr Sci 78(7): 808–817Google Scholar
  8. 8.
    Chinesta F, Ammar A, Lemarchand F, Beauchene P, Boust F (2008) Alleviating mesh constraints: model reduction, parallel time integration and high resolution homogenization. Comput Methods Appl Mech Eng 197: 400–413MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Cognard J-Y, Ladevèze P (1993) A large time increment approach for cyclic plasticity. Int J Plast 9: 114–157CrossRefGoogle Scholar
  10. 10.
    Combescure A, Gravouil A (2002) A numerical scheme to couple subdomains with different time-steps for predominantly linear transient analysis. Comput Methods Appl Mech Eng 191: 1129–1157MATHCrossRefGoogle Scholar
  11. 11.
    Cresta P, Allix O, Rey C, Guinard S (2007) Nonlinear localization strategies for domain decomposition methods in structural mechanics. Comput Methods Appl Mech Eng 196: 1436–1446MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Devries F, Dumontet F, Duvaut G, Léné F (1989) Homogenization and damage for composite structures. Int J Numer Methods Eng 27: 285–298MATHCrossRefGoogle Scholar
  13. 13.
    Farhat C, Chandesris M (2003) Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid–structure applications. Int J Numer Methods Eng 58: 1397–1434MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Farhat C, Roux FX (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Methods Eng 32: 1205–1227MATHCrossRefGoogle Scholar
  15. 15.
    Feyel F (2003) A multilevel finite element (FE2) to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192: 3233–3244MATHCrossRefGoogle Scholar
  16. 16.
    Fish J, Belsky V (1995) Multigrid method for periodic heterogeneous media. II. Multiscale modeling and quality control in multidimensional case. Comput Methods Appl Mech Eng 126(17–38)Google Scholar
  17. 17.
    Fish J, Shek K, Pandheeradi M, Shephard MS (1997) Computational plasticity for composite structures based on mathematical homogenization: theory and practice. Comput Methods Appl Mech Eng 148: 53–73MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Gravouil A, Combescure A (2003) Multi-time-step and two-scale domain decomposition method for non-linear structural dynamics. Int J Numer Methods Eng 58: 1545–1569MATHCrossRefGoogle Scholar
  19. 19.
    Guennouni T (1988) On a computational method for cycling loading: the time homogenization. Math Model Numer Anal (in french) 22(3): 417–455MATHMathSciNetGoogle Scholar
  20. 20.
    Hughes TJR, Feijoo GR, Mazzei L, Quincy J-B (1998) The variarional multiscale—a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166: 3–24MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Ibrahimbegović A, Markovič D (2003) Strong coupling methods in multi-phase and multi-scale modeling of inelastic behavior of heterogeneous structures. Comput Methods Appl Mech Eng 192: 3089–3108MATHCrossRefGoogle Scholar
  22. 22.
    Kerfriden P, Allix O, Gosselet P (2009) A three-scale domain decomposition method for the 3D analysis of debonding in laminate. Comput Mech 44(3): 343–362MATHCrossRefGoogle Scholar
  23. 23.
    Ladevèze P (1999) Nonlinear computationnal structural mechanics—new approaches and non-incremental methods of calculation. Springer, BerlinGoogle Scholar
  24. 24.
    Ladevèze P, Dureisseix D (2000) A micro/macro approch for parallel computing of heterogeneous structures. Int J Comput Civil Struct Eng 1: 18–28Google Scholar
  25. 25.
    Ladevèze P, Loiseau O, Dureisseix D (2001) A micro–macro and parallel computational strategy for highly heterogeneous structures. Int J Numer Methods Eng 52: 121–138CrossRefGoogle Scholar
  26. 26.
    Ladevèze P, Lubineau G, Violeau D (2006) Computational damage micromodel of laminated composites. Int J Fract 137: 139–150CrossRefGoogle Scholar
  27. 27.
    Ladevèze P, Néron D, Passieux J-C (2009) On multiscale computational mechanics with time–space homogenization. In: Fish J (eds) Multiscale methods—bridging the scales in science and engineering, chapter: Space Time Scale Bridging methods. Oxford University Press, Oxford, pp 247–282Google Scholar
  28. 28.
    Ladevèze P, Nouy A (2003) On a multiscale computational strategy with time and space homogenization for structural mechanics. Comput Methods Appl Mech Eng 192: 3061–3087MATHCrossRefGoogle Scholar
  29. 29.
    Ladevèze P, Nouy A, Loiseau O (2002) A multiscale computational approach for contact problems. Comput Methods Appl Mech Eng 191: 4869–4891MATHCrossRefGoogle Scholar
  30. 30.
    Ladevèze P, Passieux J-C, Néron D (2010) The LATIN multiscale computational method and the Proper Generalized Decomposition. Comput Methods Appl Mech Eng 199: 1287–1296CrossRefGoogle Scholar
  31. 31.
    Liang YC, Lee HP, Lim SP, Lin WZ, Lee KH, Wu CG (2002) Proper orthogonal decomposition and its applications. Part I. Theory. J Sound Vib 252(3): 527–544CrossRefMathSciNetGoogle Scholar
  32. 32.
    Maday Y, Turinici G (2002) A parareal in time procedure for the control of partial differential equations. Comptes Rendus Académie des Sciences Paris I(335)(Issue 4):387–392Google Scholar
  33. 33.
    Mandel J (1993) Balancing domain decomposition. Commun Numer Methods Eng 9(233–241)Google Scholar
  34. 34.
    Melenk J, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 39: 289–314CrossRefGoogle Scholar
  35. 35.
    Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Eng Sci 46: 131–150MATHGoogle Scholar
  36. 36.
    Néron D, Dureisseix D (2008) A computational strategy for poroelastic problems with a time interface between coupling physics. Int J Numer Methods Eng 73(6): 783–804CrossRefGoogle Scholar
  37. 37.
    Nouy A (2007) A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations. Comput Methods Appl Mech Eng 196(45-48): 4521–4537MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Oden JT, Vemaganti K, Moës N (1999) Hierarchical modeling of heterogeneous solids. Comput Methods Appl Mech Eng 172: 3–25MATHCrossRefGoogle Scholar
  39. 39.
    Pebrel J, Rey C, Gosselet P (2008) A nonlinear dual domain decomposition method: application to structural problems with damage. Int J Multiscale Comput Eng 6(3): 251–262CrossRefGoogle Scholar
  40. 40.
    Sanchez-Palencia E (1980) Non homogeneous media and vibration theory. Lecture Notes in Physics, vol 127Google Scholar
  41. 41.
    Strouboulis T, Coops K, Babuška I (2001) The generalized finite element method. Comput Methods Appl Mech Eng 190(32–33): 4081–4193MATHCrossRefGoogle Scholar
  42. 42.
    Temizer I, Wriggers P (2007) An adaptive method for homogenization in orthotropic nonlinear elasticity. Comput Methods Appl Mech Eng 196: 3409–3423MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Yu Q, Fish J (2002) Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: a coupled thermo-viscoelastic example problem. Int J Solids Struct 39: 6429–6452MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.LMT-Cachan (ENS Cachan/CNRS/UPMC/PRES UniverSud Paris)Cachan CedexFrance
  2. 2.EADS Foundation Chair “Advanced Computational Structural Mechanics”LMT, ENS de CachanCachanFrance

Personalised recommendations