Computational Mechanics

, Volume 46, Issue 3, pp 431–453 | Cite as

Three-dimensional crack growth with hp-generalized finite element and face offsetting methods

Original Paper

Abstract

A coupling between the hp-version of the generalized finite element method (hp-GFEM) and the face offsetting method (FOM) for crack growth simulations is presented. In the proposed GFEM, adaptive surface meshes composed of triangles are utilized to explicitly represent complex three-dimensional (3-D) crack surfaces. By applying the hp-GFEM at each crack growth step, high-order approximations on locally refined meshes are automatically created in complex 3-D domains while preserving the aspect ratio of elements, regardless of crack geometry. The FOM is applied to track the evolution of the crack front in the explicit crack surface representation. The FOM provides geometrically feasible crack front descriptions based on hp-GFEM solutions. The coupling of hp-GFEM and FOM allows the simulation of arbitrary crack growth with concave crack fronts independent of the volume mesh. Numerical simulations illustrate the robustness and accuracy of the proposed methodology.

Keywords

Generalized finite element method Extended finite element method High-order approximations Face offsetting method Crack growth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Araújo JA, Nowell D (2002) The effect of rapidly varying contact stress fields on fretting fatigue. Int J Fatigue 85: 763–775CrossRefGoogle Scholar
  2. 2.
    Areias PMA, Belytschko T (2005) Analysis of three-dimensional crack initiation and propagation using the extended finite element method. Int J Numer Methods Eng 63: 760–788MATHCrossRefGoogle Scholar
  3. 3.
    Babuška I, Banerjee U, Osborn JE (2003) Survey of meshless and generalized finite element methods: a unified approach. Acta Numer 12: 1–125MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Babuška I, Caloz G, Osborn JE (1994) Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J Numer Anal 31(4): 945–981MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Babuška I, Melenk JM (1997) The partition of unity finite element method. Int J Numer Methods Eng 40: 727–758MATHCrossRefGoogle Scholar
  6. 6.
    Belytschko T, Krongauz Y, Organ D, Fleming M (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139: 3–47MATHCrossRefGoogle Scholar
  7. 7.
    Bordas S, Moran B (2006) Enriched finite elements and level sets for damage tolerance assessment of complex structures. Eng Fract Mech 73:1176–1201. http://dx.doi.org/10.1016/j.engfracmech.2006.01.006
  8. 8.
    Carter BJ, Wawrzynek PA, Ingraffea AR (2000) Automated 3-D crack growth simulation. Int J Numer Methods Eng 47: 229–253MATHCrossRefGoogle Scholar
  9. 9.
    Chopp DL, Sukumar N (2003) Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method. Int J Eng Sci 41: 845–869MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dai DN, Hills DA, Nowell D (1997) Modelling of growth of three-dimensional cracks by a continuous distribution of dislocation loops. Comput Mech 19: 538–544MATHCrossRefGoogle Scholar
  11. 11.
    dell’Erba DN, Aliabadi MH (2000) Three-dimensional thermo-mechanical fatigue crack growth using BEM. Int J Fatigue 22: 261–273CrossRefGoogle Scholar
  12. 12.
    Duan Q, Song J-H, Menouillard T, Belytschko T (2009) Element-local level set method for three-dimensional dynamic crack growth. Int J Numer Methods Eng. In press. http://dx.doi.org/10.1002/nme.2665
  13. 13.
    Duarte CA, Babuška I, Oden JT (2000) Generalized finite element methods for three dimensional structural mechanics problems. Comput Struct 77: 215–232CrossRefGoogle Scholar
  14. 14.
    Duarte CA, Hamzeh ON, Liszka TJ, Tworzydlo WW (2001) A generalized finite element method for the simulation of three-dimensional dynamic crack propagation. Comput Methods Appl Mech Eng 190(15–17):2227–2262. http://dx.doi.org/10.1016/S0045-7825(00)00233-4
  15. 15.
    Duarte CA, Reno LG, Simone A (2007) A high-order generalized FEM for through-the-thickness branched cracks. Int J Numer Methods Eng 72(3):325–351. http://dx.doi.org/10.1002/nme.2012 Google Scholar
  16. 16.
    Duarte CAM, Oden JT (1996) An hp adaptive method using clouds. Comput Methods Appl Mech Eng 139: 237–262MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Duarte CAM, Oden JT (1996) Hp clouds–an hp meshless method. Numer Methods Partial Differ Equ 12: 673–705MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Duflot M (2007) A study of the representation of cracks with level sets. Int J Numer Methods Eng 70: 1261–1302MathSciNetCrossRefGoogle Scholar
  19. 19.
    Duflot M, Bordas S (2008) XFEM and mesh adaptation: a marriage of convenience. In: Eighth World Congress on Computational mechanics, Venice, Italy, July 2008Google Scholar
  20. 20.
    Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85: 519–525Google Scholar
  21. 21.
    FEACrack Version 2.7. Quest Reliability, LLC. Boulder, Colorado. http://www.srt-boulder.com/feacrack.htm
  22. 22.
    Gao H, Rice JR (1987) Somewhat circular tensile cracks. Int J Fract 33: 155–174MathSciNetCrossRefGoogle Scholar
  23. 23.
    Gasser TC, Holzapfel GA (2006) 3D crack propagation in unreinforced concrete. A two-step algorithm for tracking 3D crack paths. Comput Methods Appl Mech Eng 195: 5198–5219MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Gasser TC, Holzapfel GA (2005) Modeling 3D crack propagation in unreinforced concrete using PUFEM. Comput Methods Appl Mech Eng 194: 2859–2896MATHCrossRefGoogle Scholar
  25. 25.
    Gerstle WH (1985) Finite and boundary element modelling of crack propagation in two and three dimensions using interactive computer graphics. PhD thesis, Cornell University, New YorkGoogle Scholar
  26. 26.
    Gravouil A, Moës N, Belytschko T (2002) Non-planar 3d crack growth by the extended finite element and level sets. Part II: level set update. Int J Numer Methods Eng 53(11): 2569–2586CrossRefGoogle Scholar
  27. 27.
    Griebel M, Schweitzer MA (eds) (2005) Meshfree methods for partial differential equations II, Lecture notes in computational science and engineering, vol 43. Springer, BerlinGoogle Scholar
  28. 28.
    Jäger P, Steinmann P, Kuhl E (2008) Modeling three-dimensional crack propagation–a comparison of crack path tracking strategies. Int J Numer Methods Eng 76: 1328–1352CrossRefGoogle Scholar
  29. 29.
    Jiao X (2007) Face offsetting: a unified framework for explicit moving interfaces. J Comput Phys 220(2): 612–625MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Jiao X, Wang D, Zha H (2010) Simple and effective variational optimization of surface and volume triangulations. In: Engineering with computers. doi:10.1007/s00366-010-0180-z. To appear
  31. 31.
    Kim D-J, Duarte CA, Pereira JP (2008) Analysis of interacting cracks using the generalized finite element method with global-local enrichment functions. J Appl Mech 75(5): 051107CrossRefGoogle Scholar
  32. 32.
    Kim D-J, Pereira JP, Duarte CA (2009) Analysis of three-dimensional fracture mechanics problems: a two-scale approach using coarse generalized FEM meshes. Int J Numer Methods Eng 81(3):335–365. http://dx.doi.org/10.1002/nme.2690 Google Scholar
  33. 33.
    Krysl P, Belytschko T (1999) The element free Galerkin method for dynamic propagation of arbitrary 3-D cracks. Int J Numer Methods Eng 44: 767–800MATHCrossRefGoogle Scholar
  34. 34.
    Lai Y-S, Movchan AB, Rodin GJ (2002) A study of quasi-circular cracks. Int J Fract 113: 1–25CrossRefGoogle Scholar
  35. 35.
    Liu GR (2002) Mesh free methods: moving beyond the finite element method. CRC Press, Boca RatonCrossRefGoogle Scholar
  36. 36.
    Liu WK, Chen Y, Jun S, Chen JS, Belytschko T, Pan C, Uras RA, Chang CT (1996) Overview and applications of the reproducing kernel particle methods. Arch Comput Methods Eng State Art Rev 3(1): 3–80MathSciNetCrossRefGoogle Scholar
  37. 37.
    Mayer UM, Gerstenberger A, Wall WA (2009) Interface handling for three-dimensional higher-order XFEM-computations in fluid–structure interaction. Int J Numer Methods Eng. In press. http://dx.doi.org/10.1002/nme.2600
  38. 38.
    Melenk JM, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139: 289–314MATHCrossRefGoogle Scholar
  39. 39.
    Moës N, Gravouil A, Belytschko T (2002) Non-planar 3D crack growth by the extended finite element and level sets. Part I: mechanical model. Int J Numer Methods Eng 53(11): 2549–2568MATHCrossRefGoogle Scholar
  40. 40.
    NASGRO/FLAGRO (1992) Fatigue crack growth computer program NASGRO/FLAGRO version 2.0. Structures and Mechanics Division, NASA/Lyndon B. Johnson Space Center, Houston, TXGoogle Scholar
  41. 41.
    Oden JT, Duarte CA (1997) Clouds, cracks and FEM’s. In: Reddy BD (ed) Recent developments in computational and applied mechanics, Barcelona, Spain. International Center for Numerical Methods in Engineering, CIMNE. pp 302–321. http://citeseer.ist.psu.edu/17994.html
  42. 42.
    Oden JT, Duarte CA, Zienkiewicz OC (1998) A new cloud-based hp finite element method. Comput Methods Appl Mech Eng 153: 117–126MATHMathSciNetCrossRefGoogle Scholar
  43. 43.
    Oden JT, Duarte CAM (1997) Solution of singular problems using hp clouds. In: Whiteman JR (ed) The mathematics of finite elements and applications–Highlights 1996, Wiley, New York, NY, pp 35–54. http://citeseer.ist.psu.edu/170015.html
  44. 44.
    Okada H, Kawai H, Araki K, Miyazaki T (2008) Three-dimensional crack propagation analysis based on VCCM (virtual crack closure-integral method) for tetrahedral finite element. Adv Mat Res 33–37:901–906. doi:10.4028/www.scientific.net/AMR.33-37.901
  45. 45.
    Oliver J, Huespe AE, Samaniego E, Chaves EWV (2002) On strategies for tracking strong discontinuities in computational failure mechanics. In: Mang HA, Rammerstorfer FG, Eberhardsteiner J (eds) Fifth World Congress on Computational mechanics, Vienna, Austria, July 2002Google Scholar
  46. 46.
    Oliver J, Huespe AE, Samaniego E, Chaves EWV (2004) Continuum approach to the numerical simulation of material failure in concrete. Int J Numer Anal Methods Geomech 28(7–8): 609–632MATHCrossRefGoogle Scholar
  47. 47.
    Paris A, Erdogan F (1963) A critical analysis of crack propagation laws. J Basic Eng 85: 528–534Google Scholar
  48. 48.
    Park K, Pereira JP, Duarte CA, Paulino GH (2009) Integration of singular enrichment functions in the generalized/extended finite element method for three-dimensional problems. Int J Numer Methods Eng 78(10):1220–1257. http://dx.doi.org/10.1002/nme.2530 Google Scholar
  49. 49.
    Pereira JP, Duarte CA (2005) Extraction of stress intensity factors from generalized finite element solutions. Eng Anal Bound Elem 29: 397–413MATHCrossRefGoogle Scholar
  50. 50.
    Pereira JP, Duarte CA, Guoy D, Jiao X (2009) Hp-Generalized FEM and crack surface representation for non-planar 3-D cracks. Int J Numer Methods Eng 77(5):601–633. http://dx.doi.org/10.1002/nme.2419 Google Scholar
  51. 51.
    Pereira JP, Duarte CA, Jiao X, Guoy D (2009) Generalized finite element method enrichment functions for curved singularities in 3D fracture mechanics problems. Comput Mech 44(1):73–92. http://dx.doi.org/10.1007/s00466-008-0356-1 Google Scholar
  52. 52.
    Pook LP (1985) Comments on fatigue crack growth under mixed modes I and III and pure mode III loading. In: Miller KJ, Brown MW (eds) Multiaxial fatigue, ASTM STP 853, American Society for Testing and Materials, Philadelphia, pp 249–263Google Scholar
  53. 53.
    Pook LP (1995) On fatigue crack paths. Int J Fatigue 17(1): 5–13CrossRefGoogle Scholar
  54. 54.
    Prabel B, Combescure A, Gravouil A, Marie S (2007) Level set X-FEM non-matching meshes: application to dynamic crack propagation in elastic-plastic media. Int J Numer Methods Eng 69: 1553–1569CrossRefGoogle Scholar
  55. 55.
    Pustejovsky MA (1979) Fatigue crack propagation in titanium under general in-plane loading—I: experiments. Eng Fract Mech 11: 9–15CrossRefGoogle Scholar
  56. 56.
    Qian J, Fatemi A (1996) Mixed mode fatigue crack growth: a literature survey. Eng Fract Mech 55(6): 969–990CrossRefGoogle Scholar
  57. 57.
    Rabczuk T, Bordas S, Zi G (2009) On three-dimensional modeling of crack growth using partition of unity methods. Comput Struct. In press. http://dx.doi.org/10.1016/j.compstruc.2008.08.010
  58. 58.
    Richard HA, Fulland M, Sander M (2005) Theoretical crack path prediction. Fatigue Fract Eng Mater Struct 28: 3–12CrossRefGoogle Scholar
  59. 59.
    Sanford RJ (2002) Principles of fracture mechanics. Prentice Hall, Upper Saddle River, NJ, USAGoogle Scholar
  60. 60.
    Schijve J (2001) Fatigue of structures and materials. Kulver, Boston, MA, USAGoogle Scholar
  61. 61.
    Schöllmann M, Fulland M, Richard HA (2003) Development of a new software for adaptive crack growth simulations in 3-D structures. Eng Fract Mech 70: 249–268CrossRefGoogle Scholar
  62. 62.
    Schöllmann M, Richard HA, Kullmer G, Fulland M (2002) A new criterion for the prediction of crack development in multiaxially loaded structures. Int J Fract 117: 129–141CrossRefGoogle Scholar
  63. 63.
    Sethian JA (1999) Level set methods and fast marching methods evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge Monograph on applied and computational mathematics. Cambridge University Press, LondonGoogle Scholar
  64. 64.
    Sih GC, Cha BCK (1974) A fracture criterion for three-dimensional crack problems. Eng Fract Mech 6: 699–723CrossRefGoogle Scholar
  65. 65.
    Sobczyk K, Spencer BF (1992) Random fatigue: from data to theory. Academic Press, San Diego, USAMATHGoogle Scholar
  66. 66.
    Strouboulis T, Babuška I, Copps K (2000) The design and analysis of the generalized finite element mehtod. Comput Methods Appl Mech Eng 81(1–3): 43–69CrossRefGoogle Scholar
  67. 67.
    Strouboulis T, Copps K, Babuška I (2001) The generalized finite element method. Comput Methods Appl Mech Eng 190: 4081–4193MATHCrossRefGoogle Scholar
  68. 68.
    Sukumar N, Chopp D, Moës N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite element method. Comput Methods Appl Mech Eng 190: 6183–6200MATHCrossRefGoogle Scholar
  69. 69.
    Sukumar N, Chopp DL, Béchet E, Moës N (2008) Three- dimensional non-planar crack growth by a coupled extended finite element and fast marching method. Int J Numer Methods Eng 76: 727–748CrossRefGoogle Scholar
  70. 70.
    Sukumar N, Chopp DL, Moran B (2003) Extended finite element method and fast marching method for three-dimensional fatigue crack propagation. Eng Fract Mech 70: 29–48CrossRefGoogle Scholar
  71. 71.
    Sukumar N, Moës N, Moran B, Belytschko T (2000) Extended finite element method for three-dimensional crack modelling. Int J Numer Methods Eng 48(11): 1549–1570MATHCrossRefGoogle Scholar
  72. 72.
    Szabo B, Babuška I (1991) Finite element analysis. Wiley, New YorkMATHGoogle Scholar
  73. 73.
    Szabo BA, Babuška I (1988) Computation of the amplitude of stress singular terms for cracks and reentrant corners. In: Cruse TA (ed) Fracture mechanics: nineteenth symposium, ASTM STP 969, Southwest Research Institute, San Antonio, TX, pp 101–124Google Scholar
  74. 74.
    Tada H, Paris P, Irwin G (2000) The stress analysis of cracks handbook, 3rd edn. ASME Press, New YorkGoogle Scholar
  75. 75.
    Tian R, Yagawa G (2005) Generalized nodes and high- performance elements. Int J Numer Methods Eng 64: 2039–2071MATHCrossRefGoogle Scholar
  76. 76.
    Tian R, Yagawa G, Terasaka H (2006) Linear dependence problems of partition of unity-based generalized fems. Comput Methods Appl Mech Eng 195: 4768–4782MATHMathSciNetCrossRefGoogle Scholar
  77. 77.
    Timbrell C, Chandwani R, Cook G (2004) State of the art in crack propagation. In: Journée Scientifique: Les méthodes de dimensionnement en fatigue, Centre de Compétences Matériaux & Conception, Fribourg, Switzerland, October 2004Google Scholar
  78. 78.
    Ural A, Heber G, Wawrzynek P, Ingraffea A, Lewicki D, Neto J (2005) Three-dimensional, parallel, finite element simulation of fatigue crack growth in a spiral bevel pinion gear. Eng Fract Mech 72: 1148–1170CrossRefGoogle Scholar
  79. 79.
    Wawrzynek PA, Martha LF, Ingraffea AR (1988) A computational environment for the simulation of fracture processes in three-dimensions. In: Rosakis AJ (ed) Analytical, numerical and experimental aspects of three dimensional fracture process, vol 91. ASME AMD, ASME, New York, pp 321–327Google Scholar
  80. 80.
    Zentech International Limited (2008) http://www.zentech.co.uk/zencrack.htm. ZENCRACK

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Applied Mathematics and StatisticsStony Brook UniversityStony BrookUSA

Personalised recommendations