Advertisement

Computational Mechanics

, Volume 46, Issue 1, pp 53–67 | Cite as

3D fluid–structure-contact interaction based on a combined XFEM FSI and dual mortar contact approach

  • Ursula M. Mayer
  • Alexander Popp
  • Axel Gerstenberger
  • Wolfgang A. WallEmail author
Original Paper

Abstract

Finite deformation contact of flexible solids embedded in fluid flows occurs in a wide range of engineering scenarios. We propose a novel three-dimensional finite element approach in order to tackle this problem class. The proposed method consists of a dual mortar contact formulation, which is algorithmically integrated into an eXtended finite element method (XFEM) fluid–structure interaction approach. The combined XFEM fluid–structure-contact interaction method (FSCI) allows to compute contact of arbitrarily moving and deforming structures embedded in an arbitrary flow field. In this paper, the fluid is described by instationary incompressible Navier–Stokes equations. An exact fluid–structure interface representation permits to capture flow patterns around contacting structures very accurately as well as to simulate dry contact between structures. No restrictions arise for the structural and the contact formulation. We derive a linearized monolithic system of equations, which contains the fluid formulation, the structural formulation, the contact formulation as well as the coupling conditions at the fluid–structure interface. The linearized system may be solved either by partitioned or by monolithic fluid–structure coupling algorithms. Two numerical examples are presented to illustrate the capability of the proposed fluid–structure-contact interaction approach.

Keywords

Finite deformation contact Contact of solids in fluid EXtended finite element method Fluid–structure interaction Dual mortar contact approach Partitioned and monolithic fluid–structure coupling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Astorino M, Gerbeau J-F, Pantz O, Traor K-F (2009) Fluid–structure interaction and multi-body contact: application to aortic valves. Comput Methods Appl Mech Eng 198(45–46): 3603–3612zbMATHCrossRefGoogle Scholar
  2. 2.
    Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5): 601–620zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-alpha method. J Appl Mech 60: 371–375zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Diniz dos Santos N, Gerbeau J-F, Bourgat J-F (2008) A partitioned fluid–structure algorithm for elastic thin valves with contact. Comput Methods Appl Mech Eng 197(19–20): 1750–1761CrossRefGoogle Scholar
  5. 5.
    Förster Ch, Wall WA, Ramm E (1999) On the geometric conservation law in transient flow calculations on deforming domains. Int J Numer Methods Fluids 50: 1369–1379CrossRefGoogle Scholar
  6. 6.
    Gee MW, Küttler U, Wall WA (2009) Truly monolithic algebraic multigrid for fluid–structure interaction. Int J Numer Methods Eng (submitted)Google Scholar
  7. 7.
    Gerstenberger A, Wall WA (2008) Enhancement of fixed-grid methods towards complex fluid–structure interaction applications. Int J Numer Methods Fluids 57(9): 1227–1248zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gerstenberger A, Wall WA (2008) An extended finite element method/Lagrange multiplier based approach for fluid–structure interaction. Comput Methods Appl Mech Eng 197: 1699–1714CrossRefMathSciNetGoogle Scholar
  9. 9.
    Gerstenberger A, Wall WA (2009) An embedded dirichlet formulation for 3d continua. Int J Numer Methods Eng (accepted)Google Scholar
  10. 10.
    Gerstenberger A, Wall WA (2010) A fixed-grid approach to three-dimensional fluid–structure interaction (in preparation)Google Scholar
  11. 11.
    Gitterle M, Popp A, Gee MW, Wall WA (2010) Finite deformation frictional mortar contact using a semi-smooth Newton method with consistent linearization. Int J Numer Methods Eng (accepted)Google Scholar
  12. 12.
    Hartmann S, Brunssen S, Ramm E, Wohlmuth B (2007) Unilateral non-linear dynamic contact of thin-walled structures using a primal-dual active set strategy. Int J Numer Methods Eng 70(8): 883–912CrossRefMathSciNetGoogle Scholar
  13. 13.
    Hintermüller M, Ito K, Kunisch K (2002) The primal-dual active set strategy as a semismooth Newton method. SIAM J Optim 13(3): 865–888CrossRefMathSciNetGoogle Scholar
  14. 14.
    Hüeber S, Wohlmuth B (2005) A primal-dual active set strategy for non-linear multibody contact problems. Comput Methods Appl Mech Eng 194(27–29): 3147–3166zbMATHCrossRefGoogle Scholar
  15. 15.
    Küttler U, Gee MW, Förster Ch, Comerford A, Wall WA (2009) Coupling strategies for biomedical fluid–structure interaction problems. Int J Numer Methods Biomed Eng (accepted)Google Scholar
  16. 16.
    Laursen TA (2002) Computational contact and impact mechanics. Springer, BerlinzbMATHGoogle Scholar
  17. 17.
    Mayer UM, Gerstenberger A, Wall WA (2009) Interface handling for three-dimensional higher-order XFEM computations in fluid–structure interaction. Int J Numer Methods Eng 79: 846– 869zbMATHCrossRefGoogle Scholar
  18. 18.
    Mayer UM, Wall WA (2010) A finite element approach to 3D intermolecular & surface interaction of multiple flexible mesoscopic structures in fluid flow (in preparation)Google Scholar
  19. 19.
    Mayer UM, Wall WA (2010) Efficient parallel search algorithms in (mesoscopic) fluid–structure interaction (in preparation)Google Scholar
  20. 20.
    Moes N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46: 131–150zbMATHCrossRefGoogle Scholar
  21. 21.
    Popp A, Gee MW, Wall WA (2009) A finite deformation mortar contact formulation using a primal-dual active set strategy. Int J Numer Methods Eng 79: 1354–1391zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Popp A, Gitterle M, Gee MW, Wall WA (2010) A dual mortar approach for 3d finite deformation contact with consistent linearization. Int J Numer Methods Eng (accepted)Google Scholar
  23. 23.
    Puso MA (2004) A 3D mortar method for solid mechanics. Int J Numer Methods Eng 59(3): 315–336zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193(6–8): 601–629zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Puso MA, Laursen TA (2004) A mortar segment-to-segment frictional contact method for large deformations. Comput Methods Appl Mech Eng 193(45–47): 4891–4913zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Qi L, Sun J (1993) A nonsmooth version of Newton’s method. Math Program 58(1): 353–367CrossRefMathSciNetGoogle Scholar
  27. 27.
    Sathe S, Tezduyar TE (2008) Modeling of fluid–structure interactions with the space–time finite elements: contact problems. Comput Mech 43(1): 51–60zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure. I. The concept and the prelimianry numerical tests. Comput Methods Appl Mech Eng 94: 339–351zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space-time procedure. II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94: 353–371zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Tezduyar TE, Sathe S (2007) Modelling of fluid–structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54(6-8): 855–900zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    van Loon R, Anderson PD, van de Vosse FN (2006) A fluid–structure interaction method with solid-rigid contact for heart valve dynamics. J Comput Phys 217(2): 806–823zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Wall WA, Gamnitzer P, Gerstenberger A (2008) Fluid–structure interaction approaches on fixed grids based on two different domain decomposition ideas. Int J Comput Fluid Dyn 22(6): 411–427zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Wall WA, Gee MW (2009) Baci—a multiphysics simulation environment. Technical report, Technische Universität MünchenGoogle Scholar
  34. 34.
    Wall WA, Gerstenberger A, Mayer UM (2008) Advances in fixed-grid fluid structure interaction. In: ECCOMAS multidisciplinary jubilee symposium—new computational challenges in materials, structure and fluids 14: 235–249Google Scholar
  35. 35.
    Wohlmuth BI (2000) A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J Numer Anal 38(3): 989–1012zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Wohlmuth BI (2001) Discretization methods and iterative solvers based on domain decomposition. Springer, BerlinzbMATHGoogle Scholar
  37. 37.
    Wriggers P (2002) Computational contact mechanics. John Wiley & Sons, New YorkGoogle Scholar
  38. 38.
    Yang B, Laursen TA (2009) A mortar-finite element approach to lubricated contact problems. Comput Methods Appl Mech Eng 198: 3656–3669CrossRefMathSciNetGoogle Scholar
  39. 39.
    Yang B, Laursen TA, Meng X (2005) Two dimensional mortar contact methods for large deformation frictional sliding. Int J Numer Methods Eng 62(9): 1183–1225zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ursula M. Mayer
    • 1
  • Alexander Popp
    • 1
  • Axel Gerstenberger
    • 1
  • Wolfgang A. Wall
    • 1
    Email author
  1. 1.Institute for Computational MechanicsTechnische Universität MünchenGarchingGermany

Personalised recommendations