Computational Mechanics

, Volume 46, Issue 1, pp 205–211 | Cite as

Analysis of an efficient finite element method for embedded interface problems

Original Paper


A stabilized finite element method based on the Nitsche technique for enforcing constraints leads to an efficient computational procedure for embedded interface problems, in which the finite element mesh need not be aligned with the interface geometry. We consider cases in which the jump of a field across the interface is given, as well as cases in which the primary field on the interface is given. Optimal rates of convergence hold. Representative numerical examples demonstrate the effectiveness of the proposed methodology.


Elliptic interface Embedded Finite element 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chessa J, Smolinski P, Belytschko T (2000) The extended finite element method for solidification problems. Int J Numer Methods Eng 28(5): 339–350Google Scholar
  2. 2.
    Daux C, Moës N, Dolbow J, Sukumar N, Belytschko T (2000) Arbitrary branched and intersecting cracks with the extended finite element method. Int J Numer Methods Eng 48(12): 1741–1760MATHCrossRefGoogle Scholar
  3. 3.
    Dolbow J, Harari I (2009) An efficient finite element method for embedded interface problems. Internat. J Numer Methods Eng 78(2): 229–252. doi: 10.1002/nme.2486 MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dolbow J, Mosso S, Robbins J, Voth T (2008) Coupling volume-of-fluid based interface reconstructions with the extended finite element method. Comput Methods Appl Mech Eng 197: 439–447MATHCrossRefGoogle Scholar
  5. 5.
    Dolbow JE, Franca L (2008) Residual-free bubbles for embedded Dirichlet problems. Comput Methods Appl Mech Eng 197: 3751–3759CrossRefMathSciNetGoogle Scholar
  6. 6.
    Dolbow JE, Fried E, Ji H (2005) A numerical strategy for investigating the kinetic response of stimulus responsive hydrogels. Comput Methods Appl Mech Eng 194: 4447–4480MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Duddu R, Bordas S, Chopp D, Moran B (2008) A combinded extended finite element and level set method for biofilm growth. Int J Numer Methods Eng 74(5): 848–870CrossRefMathSciNetGoogle Scholar
  8. 8.
    Elias R, Martins M, Coutinho A (2007) Simple finite element-based computation of distance functions in unstructured grids. Int J Numer Methods Eng 72(9): 1095–1110CrossRefMathSciNetGoogle Scholar
  9. 9.
    Fedkiw R, Aslam T, Merriman B, Osher S (1999) A non- oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J Comput Phys 152(2): 457–492MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fries T (2009) The intrinsic xfem for two-fluid flows. Int J Numer Methods Eng 60: 437–471MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hansbo A, Hansbo P (2002) An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput Methods Appl Mech Eng 191(47–48): 5537–5552. doi: 10.1016/S0045-7825(02)00524-8 MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Ji H, Dolbow JE (2004) On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method. Int J Numer Methods Eng 61(14): 2508–2535MATHCrossRefGoogle Scholar
  13. 13.
    Juntunen M, Stenberg R (2009) Nitsche’s method for general boundary conditions. Math Comput 78(267): 1353–1374. doi: 10.1090/S0025-5718-08-02183-2 MathSciNetGoogle Scholar
  14. 14.
    Liu X, Fedkiw R, Kang M (2000) A boundary condition capturing method for Poisson’s equation on irregular domains. J Comput Phys 160: 151–178MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Merle R, Dolbow J (2002) Solving thermal and phase change problems with the extended finite element method. Comptu Mech 28(5): 339–350MATHCrossRefGoogle Scholar
  16. 16.
    Moës N, Bechet E, Tourbier M (2006) Imposing essential boundary conditions in the extended finite element method. Int J Numer Methods Eng 67(12): 1641–1669MATHCrossRefGoogle Scholar
  17. 17.
    Moës N, Cloirec M, Cartraud P, Remacle J (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192(3): 3163–3177MATHCrossRefGoogle Scholar
  18. 18.
    Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1): 131–150. doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J MATHCrossRefGoogle Scholar
  19. 19.
    Mourad H, Dolbow J, Garikipati K (2005) An assumed-gradient finite element method for the level-set equation. Int J Numer Methods Eng 8(8): 1009–1032CrossRefMathSciNetGoogle Scholar
  20. 20.
    Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh Math Sem Univ Hamburg 36(1): 9–15. doi: 10.1007/BF02995904 MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Song JH, Areias PMA, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Methods Eng 67(6): 868–868. doi: 10.1002/nme.1652 MATHCrossRefGoogle Scholar
  22. 22.
    Stenberg R (1995) On some techniques for approximating boundary conditions in the finite element method. J Comput Appl Math 63: 139–148MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94(3): 339–351. doi: 10.1016/0045-7825(92)90059-S MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Valance S, de Borst R, Rethore J, Coret M (2008) A partition-of-unity-based finite element method for level sets. Int J Numer Methods Eng 76(10): 1513–1527CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Faculty of EngineeringTel Aviv UniversityRamat AvivIsrael
  2. 2.Department of Civil and Environmental EngineeringDuke UniversityDurhamUSA

Personalised recommendations