Advertisement

Computational Mechanics

, Volume 46, Issue 1, pp 91–101 | Cite as

A poroelastic model valid in large strains with applications to perfusion in cardiac modeling

  • D. Chapelle
  • J.-F. Gerbeau
  • J. Sainte-Marie
  • I. E. Vignon-ClementelEmail author
Original Paper

Abstract

This paper is motivated by the modeling of blood flows through the beating myocardium, namely cardiac perfusion. As in other works, perfusion is modeled here as a flow through a poroelastic medium. The main contribution of this study is the derivation of a general poroelastic model valid for a nearly incompressible medium which experiences finite deformations. A numerical procedure is proposed to iteratively solve the porous flow and the nonlinear poroviscoelastic problems. Three-dimensional numerical experiments are presented to illustrate the model. The first test cases consist of typical poroelastic configurations: swelling and complete drainage. Finally, a simulation of cardiac perfusion is presented in an idealized left ventricle embedded with active fibers. Results show the complex temporal and spatial interactions of the muscle and blood, reproducing several key phenomena observed in cardiac perfusion.

Keywords

Porous media Large deformation Incompressibility limit Cardiac perfusion Biomechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Spaan J, Kolyva C, van den Wijngaard J, ter Wee R, van Horssen P, Piek J, Siebes M (2008) Coronary structure and perfusion in health and disease. Phil Trans R Soc A 366(1878): 3137–3153CrossRefGoogle Scholar
  2. 2.
    Horssen P, Wijngaard JPHM, Siebes M, Spaan JAE (2009) Improved regional myocardial perfusion measurement by means of an imaging cryomicrotome. In: 4th European conference of the international federation for medical and biological engineering. Springer, New York, pp 771–774Google Scholar
  3. 3.
    Westerhof N, Boer C, Lamberts RR, Sipkema P (2006) Cross-talk between cardiac muscle and coronary vasculature. Physiol Rev 86(4): 1263–1308CrossRefGoogle Scholar
  4. 4.
    Smith N, Kassab G (2001) Analysis of coronary blood flow interaction with myocardial mechanics based on anatomical models. Phil Trans R Soc Lond A 359: 1251–1262CrossRefGoogle Scholar
  5. 5.
    Smith N (2004) A computational study of the interaction between coronary blood flow and myocardial mechanics. Physiol Meas 25(4): 863–877CrossRefGoogle Scholar
  6. 6.
    Terzaghi K (1943) Theoretical soil mechanics. Wiley, New YorkCrossRefGoogle Scholar
  7. 7.
    Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. II Higher frequency range. J Acoust Soc Am 28: 179–191CrossRefMathSciNetGoogle Scholar
  8. 8.
    Biot MA (1972) Theory of finite deformations of porous solids. Indiana Univ Math J 21: 597–620CrossRefMathSciNetGoogle Scholar
  9. 9.
    May-Newman K, McCulloch AD (1998) Homogenization modeling for the mechanics of perfused myocardium. Prog Biophys Mol Biol 69: 463–481CrossRefGoogle Scholar
  10. 10.
    Almeida E, Spilker R (1998) Finite element formulations for hyperelastic transversely isotropic biphasic soft tissues. Comput Methods Appl Mech Eng 151(3–4): 513–538zbMATHCrossRefGoogle Scholar
  11. 11.
    Yang Z, Smolinski P (2006) Dynamic finite element modeling of poroviscoelastic soft tissue. Comput Methods Biomech Biomed Eng 9(1): 7–16CrossRefGoogle Scholar
  12. 12.
    Borja R (2006) On the mechanical energy and effective stress in saturated and unsaturated porous continua. Int J Solids Struct 43(6): 1764–1786zbMATHCrossRefGoogle Scholar
  13. 13.
    Badia S, Quaini A, Quarteroni A (2009) Coupling Biot and Navier–Stokes equations for modelling fluid–poroelastic media interaction. J Comput Phys (to appear)Google Scholar
  14. 14.
    Koshiba N, Ando J, Chen X, Hisada T (2007) Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model. J Biomech Eng 129: 374CrossRefGoogle Scholar
  15. 15.
    Calo V, Brasher N, Bazilevs Y, Hughes T (2008) Multiphysics model for blood flow and drug transport with application to patient-specific coronary artery flow. Comput Mech 43(1): 161–177zbMATHCrossRefGoogle Scholar
  16. 16.
    Feenstra P, Taylor C (2009) Drug transport in artery walls: a sequential porohyperelastic-transport approach. Comput Methods Biomech Biomed Eng 12(3): 263–276CrossRefGoogle Scholar
  17. 17.
    Huyghe JM, van Campen DH (1991) Finite deformation theory of hierarchically arranged porous solids: I. Balance of mass and momentum. Int J Eng Sci 33(13): 1861–1871CrossRefGoogle Scholar
  18. 18.
    Huyghe JM, van Campen DH (1991) Finite deformation theory of hierarchically arranged porous solids: II. Constitutive behaviour. Int J Eng Sci 33(13): 1861–1871CrossRefGoogle Scholar
  19. 19.
    Cimrman R, Rohan E (2003) Modelling heart tissue using a composite muscle model with blood perfusion. In: Bathe KJ (ed) Computational fluid and solid mechanics, 2nd MIT conference, pp 1642–1646Google Scholar
  20. 20.
    Vankan W, Huyghe J, Janssen J, Huson A (1997) A finite element mixture model for hierarchical porous media. Int J Numer Methods Eng 40: 193–210CrossRefGoogle Scholar
  21. 21.
    Coussy O (1995) Mechanics of porous continua. Wiley, New YorkzbMATHGoogle Scholar
  22. 22.
    de Buhan P, Chateau X, Dormieux L (1998) The constitutive equations of finite-strain poroelasticity in the light of a micro-macro approach. Eur J Mech A/Solids 17(6): 909–922zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Ciarlet PG, Geymonat G (1982) Sur les lois de comportement en élasticité non linéaire. CRAS Série II 295: 423–426zbMATHMathSciNetGoogle Scholar
  24. 24.
    Sainte-Marie J, Chapelle D, Cimrman R, Sorine M (2006) Modeling and estimation of the cardiac electromechanical activity. Comput Struct 84: 1743–1759CrossRefMathSciNetGoogle Scholar
  25. 25.
    Brezzi F, Fortin M (1991) Mixed and hybrid finite element method. Springer, New YorkGoogle Scholar
  26. 26.
    Irons B, Tuck R (1969) A version of the Aitken accelerator for computer implementation. Int J Numer Methods Eng 1: 275–277zbMATHCrossRefGoogle Scholar
  27. 27.
    Bestel J, Clément F, Sorine M (2001) A biomechanical model of muscle contraction. In: Niessen WJ, Viergever MA (eds) Lectures Notes in Computer Science, vol 2208. Springer-Verlag, New York, pp 1159–1161Google Scholar
  28. 28.
    Krejčí P, Sainte-Marie J, Sorine M, Urquiza J (2005) Solutions to muscle fiber equations and their long time behaviour. Nonlinear Anal: Real World Anal 7(4): 535–558CrossRefGoogle Scholar
  29. 29.
    Chapelle D, Le Tallec P, Moireau P (2009) Mechanical modeling of the heart contraction. (in preparation)Google Scholar
  30. 30.
    Chapelle D, Fernánde M, Gerbeau J-F, Moireau P, Sainte- Marie J, Zemzemi N (2009) Numerical simulation of the electromechanical activity of the heart. In: FIMH, vol 5528 of Lecture Notes in Computer Science, pp 357–365Google Scholar
  31. 31.
    Boulakia M, Cazeau S, Fernández MA, Gerbeau J-F, Zemzemi N (2009) Mathematical modeling of electrocardiograms: a numerical study. Research Report RR-6977, INRIA. URL http://hal.inria.fr/inria-00400490/en/
  32. 32.
    Zinemanas D, Beyar R, Sideman S (1995) An integrated model of LV muscle mechanics, coronary flow, and fluid and mass transport. Am J Physiol Heart Circ Physiol 268(2): H633–H645Google Scholar
  33. 33.
    Kassab GS, Le KN, Fung Y-CB (1999) A hemodynamic analysis of coronary capillary blood flow based on anatomic and distensibility data. Am J Physiol Heart Circ Physiol 277(6): H2158–H2166Google Scholar
  34. 34.
    Fronek K, Zweifach B (1975) Microvascular pressure distribution in skeletal muscle and the effect of vasodilation. Am J Physiol 228(3): 791–796Google Scholar
  35. 35.
    Berne R, Levy M (2001) Cardiovascular physiology. St Louis, MosbyGoogle Scholar
  36. 36.
    Gonzalez F, Bassingthwaighte JB (1990) Heterogeneities in regional volumes of distribution and flows in rabbit heart. Am J Physiol Heart Circ Physiol 258(4): H1012–H1024Google Scholar
  37. 37.
    May-Newman K, Chen C, Oka R, Haslim R, DeMaria A (2001) Evaluation of myocardial perfusion using three-dimensional myocardial contrast echocardiography. In: Nuclear science symposium conference record, vol 3. IEEE, pp 1691–1694Google Scholar
  38. 38.
    Ghista D, Ng E (2007) Cardiac perfusion and pumping engineering. World Scientific, SingaporeGoogle Scholar
  39. 39.
    Huyghe JM, Arts T, van Campen DH, Reneman RS (1992) Porous medium finite element model of the beating left ventricle. Am J Physiol Heart Circ Physiol 262(4): H1256–H1267Google Scholar
  40. 40.
    Ashikaga H, Coppola BA, Yamazaki K, Villarreal FJ, Omens JH, Covell JW (2008) Changes in regional myocardial volume during the cardiac cycle: implications for transmural blood flow and cardiac structure. Am J Physiol Heart Circ Physiol 295(2): H610–H618CrossRefGoogle Scholar
  41. 41.
    Goto M, Flynn AE, Doucette JW, Jansen CM, Stork MM, Coggins DL, Muehrcke DD, Husseini WK, Hoffman JI (1991) Cardiac contraction affects deep myocardial vessels predominantly. Am J Physiol Heart Circ Physiol 261(5): H1417–H1429Google Scholar
  42. 42.
    Gregg D, Green H (1940) Registration and interpretation of normal phasic inflow into a left coronary artery by an improved differential manometric method. Am J Physiol 130: 114–125Google Scholar
  43. 43.
    Nichols W, O’Rourke M (2005) McDonald’s blood flow in arteries. Hodder ArnoldGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • D. Chapelle
    • 1
  • J.-F. Gerbeau
    • 1
  • J. Sainte-Marie
    • 1
    • 2
  • I. E. Vignon-Clementel
    • 1
    Email author
  1. 1.INRIA Paris-RocquencourtLe Chesnay CedexFrance
  2. 2.Saint-Venant LaboratoryChatou CedexFrance

Personalised recommendations