Computational Mechanics

, Volume 46, Issue 1, pp 115–124 | Cite as

On the analysis of heterogeneous fluids with jumps in the viscosity using a discontinuous pressure field

  • Sergio R. Idelsohn
  • Monica Mier-Torrecilla
  • Norberto Nigro
  • Eugenio Oñate
Original Paper

Abstract

Heterogeneous incompressible fluid flows with jumps in the viscous properties are solved with the particle finite element method using continuous and discontinuous pressure fields. We show the importance of using discontinuous pressure fields to avoid errors in the incompressibility condition near the interface.

Keywords

Heterogeneous fluids Multi-fluids Multiphase flows Incompressible Navier–Stokes equations Free-surfaces Interfaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sommerfeld M, van Wachem B, Oliemans R (eds) (2007) ERCOFTAC Special Interest Group on Dispersed Turbulent Multi-Phase Flow, Best Practice GuidelinesGoogle Scholar
  2. 2.
    Tezduyar TE (1999) CFD methods for three-dimensional computation of complex flow problems. J Wind Eng Ind Aerodyn 81: 97–116CrossRefGoogle Scholar
  3. 3.
    Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian– Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29: 239–349CrossRefMathSciNetGoogle Scholar
  4. 4.
    Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces. The deforming-spatial-domain/space-time procedure: I. The concept and preliminary numerical tests. Comput Methods Appl Mech Eng 94: 339–351MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces. The deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows and flows with drifting cylinders. Comput Methods Appl Mech Eng 94: 353–371MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Sethian JA (2001) Evolution, implementation, and application of level set and fast marching methods for advancing fronts. J Comput Phys 169: 503–555MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Osher S, Fedkiw RP (2001) Level set methods: an overview and some recent results. J Comput Phys 169: 463–502MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Guermond JL, Quartapelle L (2000) A projection FEM for variable density incompressible flows. J Comput Phys 165: 167–188MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Tezduyar T, Aliabadi S, Behr M (1998) Enhanced-discretization interface-capturing technique (EDICT) for computation of unsteady flows with interfaces. Comput Methods Appl Mech Eng 155: 235–248MATHCrossRefGoogle Scholar
  10. 10.
    Tezduyar TE, Aliabadi S (2000) EDICT for 3D computation of two-fluid interfaces. Comput Methods Appl Mech Eng 190: 403–410MATHCrossRefGoogle Scholar
  11. 11.
    Idelsohn SR, Oñate E, Del Pin F (2004) The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Methods Eng 61(7): 964–989MATHCrossRefGoogle Scholar
  12. 12.
    Oñate E, Idelsohn SR, del Pin F, Aubry R (2004) The particle finite element method: an overview. Int J Comput Methods 1(2): 267–307MATHCrossRefGoogle Scholar
  13. 13.
    Idelsohn SR, Oñate E, Del Pin F, Calvo N (2006) Fluid-structure interaction using the particle finite element method. Comput Methods Appl Mech Eng 195(17–18): 2100–2123MATHCrossRefGoogle Scholar
  14. 14.
    Idelsohn SR, Mier-Torrecilla M, Oñate E (2009) Multi-fluid flows with the particle finite element method. Comput Methods Appl Mech Eng 198: 2750–2767CrossRefGoogle Scholar
  15. 15.
    Unverdi SO, Tryggvason G (1992) A front-tracking method for viscous, incompressible, multi-fluid flows. J Comput Phys 100: 25–37MATHCrossRefGoogle Scholar
  16. 16.
    Scardovelli R, Zaleski S (1999) Direct numerical simulation of free-surface and interfacial flow. Annu Rev Fluid Mech 31: 567–603CrossRefMathSciNetGoogle Scholar
  17. 17.
    Smolianski A (2005) Finite-Element/Level-Set/Operator-Splitting (FELSOS) approach for computing two-fluid unsteady flows with free moving interfaces. Int J Numer Methods Fluids 48: 231–269MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Li Z, Lubkin S (2001) Numerical analysis of interfacial two-dimensional Stokes flow with discontinuous viscosity and variable surface tension. Int J Numer Methods Fluids 37: 525–540MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Minev PD, Chen T, Nandakumar K (2003) A finite element technique for multifluid incompressible flow using Eulerian grids. J Comput Phys 187: 255–273MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Gross S, Reusken A (2007) An extended pressure finite element space for two-phase incompressible flows with surface tension. J Comput Phys 224: 40–58MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Hyman JM (1984) Numerical methods for tracking interfaces. Phys D Nonlinear Phenom 12: 396–407MATHCrossRefGoogle Scholar
  22. 22.
    Floryan JM, Rasmussen H (1989) Numerical methods for viscous flows with moving boundaries. Appl Mech Rev 42: 323–337CrossRefMathSciNetGoogle Scholar
  23. 23.
    Codina R, Blasco J (2000) Stabilized finite element method for the transient Navier–Stokes equations based on a pressure gradient projection. Comput Methods Appl Mech Eng 182: 277–300MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Oñate E (2000) A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation. Comput Methods Appl Mech Eng 182: 355–370MATHCrossRefGoogle Scholar
  25. 25.
    Kang M, Fedkiw RP, Liu XD (2000) A boundary condition capturing method for multiphase incompressible flow. J Sci Comput 15: 323–360MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Ganesan S, Matthies G, Tobiska L (2007) On spurious velocities in incompressible flow problem with interfaces. Comput Methods Appl Mech Eng 196: 1193–1202MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Sergio R. Idelsohn
    • 1
  • Monica Mier-Torrecilla
    • 1
  • Norberto Nigro
    • 1
    • 2
  • Eugenio Oñate
    • 1
    • 3
  1. 1.International Centre for Numerical Methods in Engineering (CIMNE), Gran Capitan s/nTechnical University of CataloniaBarcelonaSpain
  2. 2.Universidad Nacional del LitoralSanta FeArgentina
  3. 3.Universitat Politécnica de CataluñaBarcelonaSpain

Personalised recommendations