Advertisement

Computational Mechanics

, Volume 46, Issue 1, pp 159–167 | Cite as

A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors

  • A. Corsini
  • C. Iossa
  • F. Rispoli
  • T. E. Tezduyar
Original Paper

Abstract

An effective multiscale treatment of turbulent reacting flows is presented with the use of a stabilized finite element formulation. The method proposed is developed based on the streamline-upwind/Petrov–Galerkin (SUPG) formulation, and includes discontinuity capturing in the form of a new generation “DRD” method, namely the “DRDJ” technique. The stabilized formulation is applied to finite-rate chemistry modelling based on mixture-fraction approaches with the so-called presumed-PDF technique. The turbulent combustion process is simulated for an aero-engine combustor configuration of RQL concept in non-premixed flame regime. The comparative analysis of the temperature and velocity fields demonstrate that the proposed SUPG+DRDJ formulation outperforms the stand-alone SUPG method. The improved accuracy is demonstrated in terms of the combustor overall performance, and the mechanisms involved in the distribution of the numerical diffusivity are also discussed.

Keywords

Finite element Discontinuities Reacting flows 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Riley J (2006) Review of large Eddy Simulation of non-premixed turbulent combustion. J Fluid Eng 128: 209–215CrossRefGoogle Scholar
  2. 2.
    Corsini A, Rispoli F, Santoriello A et al (2004) A new stabilized finite element method for advection–diffusion reaction equations using quadratic elements. In: Lajos T (eds) Modelling fluid flow. Springer, BerlinGoogle Scholar
  3. 3.
    Corsini A, Rispoli F, Santoriello A (2005) A variational multiscale high-order finite element formulation for turbomachinery flow computations. Comput Method Appl M 194: 4797–4823zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Corsini A, Rispoli F, Santoriello A, Tezduyar TE (2006) Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation. Comput Mech 38: 356–364zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Corsini A, Menichini F, Rispoli F, Santoriello A, Tezduyar TE (2009) A multiscale finite element formulation with discontinuity capturing for turbulence models with dominant reactionlike terms. J Appl Mech 76: 021211CrossRefGoogle Scholar
  6. 6.
    Dubois T, Jauberteau F, Temam R (1993) Solution of the incompressible Navier–Stokes equations by the nonlinear galerkin method. J Sci Comput 8: 167–194zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hughes TJR, Mazzei L, Jansen KE (2000) Large eddy simulation and the variational multiscale method. Comput Visual Sci 3: 47–59zbMATHCrossRefGoogle Scholar
  8. 8.
    Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Method Appl M 197: 173–201zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Rispoli F, Corsini A, Tezduyar TE (2007) Finite element computation of turbulent flows with the Discontinuity-Capturing Directional Dissipation (DCDD). Comput Fluids 36: 121–126zbMATHCrossRefGoogle Scholar
  10. 10.
    Tezduyar TE, Park YJ (1986) Discontinuity capturing finite element formulations for nonlinear convection–diffusion reaction equations. Comput Method Appl M 59: 307–325zbMATHCrossRefGoogle Scholar
  11. 11.
    Tezduyar TE, Park YJ, Deans HA (1987) Finite element procedures for time-dependent convection–diffusion reaction systems. Int J Numer Meth Fl 7: 1013–1033zbMATHCrossRefGoogle Scholar
  12. 12.
    Hauke G, Valino L (2004) Computing reactive flows with a field Monte Carlo formulation and multi-scale methods. Comput Method Appl M 193: 1455–1470zbMATHCrossRefGoogle Scholar
  13. 13.
    Codina R (1998) Comparison of some finite element methods for solving the diffusion–convection reaction equation. Comput Method Appl M 156: 185–210zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Franca LP, Valentin F (2002) On an improved unusual stabilized finite element method for the advective–reactive diffusive equation. Comput Method Appl M 190: 1785–1800CrossRefMathSciNetGoogle Scholar
  15. 15.
    Hauke G (2002) A simple subgrid scale stabilized method for the advection–diffusion reaction equation. Comput Method Appl M 191: 2925–2947zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Gravemeier V, Wall WA (2007) A ‘divide-and-conquer’ spatial and temporal multiscale method for transient convection–diffusion reaction equations. Int J Numer Meth Fl 54: 779–804zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput Method Appl M 127: 387–401zbMATHCrossRefGoogle Scholar
  18. 18.
    Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Method Appl M 32: 199–259zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Liew SK, Bray KNC, Moss JB (1984) Laminar diffusion flamelet model of turbulent non-premixed combustion. Combust Flame 56: 199–213CrossRefGoogle Scholar
  20. 20.
    Peters N (1984) Laminar diffusion flamelet models in non- premixed turbulent combustion. Prog Energ Combust 10: 319–339CrossRefGoogle Scholar
  21. 21.
    Lentini D, Jones WP (1991) Computational modelling of dump combustors flowfield. NASA CP3078: 623–634Google Scholar
  22. 22.
    Lentini D (1994) Assessment of the stretched laminar flamelet approach for non-premixed turbulent combustion. Comb Sci Technol 100: 95–122CrossRefGoogle Scholar
  23. 23.
    Corsini A, Rispoli F (2005) Flow analyses in a high-pressure axial ventilation fan with a non-linear eddy viscosity closure. Int J Heat Fluid Fl 17: 108–155Google Scholar
  24. 24.
    Craft TJ, Launder BE, Suga K (1996) Development and application of a cubic eddy-viscosity model of turbulence. Int J Heat Fluid Fl 17: 108–155CrossRefGoogle Scholar
  25. 25.
    Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Method Appl M 190: 411–430zbMATHCrossRefGoogle Scholar
  26. 26.
    Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Meth Fl 43: 555–575zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36: 191–206zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Mosier SA, Pierce RM (1980) Advanced combustor systems for stationary gas turbine engines, phase I. Review and preliminary evaluation, vol I, Contract 68-02-2136, FR-11405, US Environmental Protection AgencyGoogle Scholar
  29. 29.
    Pitsch H, Desjardins O, Balarac G, Ihme M (2008) Large-eddy simulation of turbulent reacting flows. Prog Aerosp Sci 44(6): 466–478CrossRefGoogle Scholar
  30. 30.
    ICAO Engine Exhaust Emission Data Bank (2004) Report PWA-4098-6726-01Google Scholar
  31. 31.
    Kurze J (2005) How to create a performance model of a gas turbine from a limited amount of information. ASME paper GT2005-68537Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • A. Corsini
    • 1
  • C. Iossa
    • 1
  • F. Rispoli
    • 1
  • T. E. Tezduyar
    • 2
  1. 1.Department of Mechanics and AeronauticsUniversity of Rome “La Sapienza”RomeItaly
  2. 2.Mechanical EngineeringRice UniversityHoustonUSA

Personalised recommendations