Advertisement

Computational Mechanics

, Volume 46, Issue 1, pp 103–114 | Cite as

The PDE framework Peano applied to fluid dynamics: an efficient implementation of a parallel multiscale fluid dynamics solver on octree-like adaptive Cartesian grids

  • Hans-Joachim Bungartz
  • Miriam MehlEmail author
  • Tobias Neckel
  • Tobias Weinzierl
Original Paper

Abstract

This paper presents the general purpose framework Peano for the solution of partial differential equations (PDE) on adaptive Cartesian grids. The strict structuredness and inherent multilevel property of these grids allows for very low memory requirements, efficient (in terms of hardware performance) implementations of parallel multigrid solvers on dynamically adaptive grids, and arbitrary spatial dimensions. This combination of advantages distinguishes Peano from other PDE frameworks. We describe shortly the underlying octree-like grid type and its most important properties. The main part of the paper shows the framework concept of Peano and the implementation of a Navier–Stokes solver as one of the main currently implemented application examples. Various results ranging from hardware and numerical performance to concrete application scenarios close the contribution.

Keywords

PDE framework Octree-like grids Cartesian grids Computational fluid dynamics Moving geometries Multigrid methods Parallelisation Memory efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aoki T (1997) Interpolated differential operator (IDO) scheme for solving partial differential equations. Comput Phys Comm 102: 132–146CrossRefGoogle Scholar
  2. 2.
    Bader M, Bungartz H-J, Frank A, Mundani R-P (2002) Space tree structures for PDE software. In: Proceedings of the International Conference on Computer Science (3), vol 2331, p 662Google Scholar
  3. 3.
    Bader M, Frank A, Zenger C (2002) An octree-based approach for fast elliptic solvers. High Perform Sci Eng Comput 21: 157–166Google Scholar
  4. 4.
    Bastian P, Blatt M, Dedner A, Engwer C, Klöfkorn R, Ohlberger M, Sander O (2008) A generic grid interface for parallel and adaptive scientific computing. Part I: Abstract Framework. Computing 82(2–3): 103–119zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Borrmann A, Schraufstetter S, Rank E (2009) Implementing metric operators of a spatial query language for 3d building models: octree and b-rep approaches. J Comput Civil Eng 23(1): 34–46CrossRefGoogle Scholar
  6. 6.
    Brenk M, Bungartz H-J, Daubner K, Mehl M, Muntean IL, Neckel T (2008) An Eulerian approach for partitioned fluid-structure simulations on Cartesian grids. Comput Mech (accepted)Google Scholar
  7. 7.
    Brenk M, Bungartz H-J, Mehl M, Muntean IL, Neckel T, Weinzierl T (2008) Numerical simulation of particle transport in a drift ratchet. SIAM J Sci Comput 30(6): 2777–2798zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Deering M (1995) Geometry compression. In: SIGGRAPH ’95: proceedings of the 22nd annual conference on computer graphics and interactive techniques. ACM Press, New York, pp 13–20Google Scholar
  9. 9.
    Düster A, Bröker H, Heidkamp H, Heißerer U, Kollmannsberger S, Krause R, Muthler A, Niggl A, Nübel V, Rücker M, Scholz D (2004) AdhoC4—user’s guide. Lehrstuhl für Bauinformatik, Technische Universität MünchenGoogle Scholar
  10. 10.
    Fuster D, Baguéa A, Boeckc T, Le Moynea L, Leboissetierd A, Popinete S, Raya P, Scardovellif R, Zaleskia S (2009) Simulation of primary atomization with an octree adaptive mesh refinement and vof method. Int J Multiph Flow 35(6): 550–565CrossRefGoogle Scholar
  11. 11.
    Gamma E, Helm R, Johnson RE, Vlissides J (1994) Design patterns—elements of reusable object-oriented software, 1st edn. Addison-Wesley, LongmanGoogle Scholar
  12. 12.
    Gao F, Ingram DM, Causon DM, Mingham CG (2007) The development of a Cartesian cut cell method for incompressible viscous flows. Int J Numer Meth Fluids 64(9): 1033–1053CrossRefMathSciNetGoogle Scholar
  13. 13.
    Gerstenbrger A, Wall WA (2007) An extended finite element method/mortar method based approach for fluid-structure interactions. Comput Methods Appl Mech Eng 197: 1699–1714CrossRefGoogle Scholar
  14. 14.
    Harlow FH, Welch JE (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. Phys Fluids 8(12): 2182–2189zbMATHCrossRefGoogle Scholar
  15. 15.
    Imai Y, Aoki T (2006) A higher-order implicit IDO scheme and its CFD application to local mesh refinement method. Comput Mech 38: 211–221zbMATHCrossRefGoogle Scholar
  16. 16.
    Imai Y, Aoki T, Takizawa K (2008) Conservative form of interpolated differential operator scheme for compressible and incompressible fluid dynamics. J Comput Phys 227: 2263–2285zbMATHGoogle Scholar
  17. 17.
    Klass O, Shephard MS (2000) Automatic generation of octree-based three-dimensional discretisations for partition of unity methods. J Comput Mech 25(2–3): 296–304CrossRefGoogle Scholar
  18. 18.
    Lam TW, Yu KM, Cheung KM, Li CL (1998) Octree reinforced thin shell objects rapid prototyping by fused deposition modelling. Int J Adv Manufact Technol 14(9): 631–636CrossRefGoogle Scholar
  19. 19.
    Long K (2009) Sundance: a rapid prototyping toolkit for parallel pde simulation and optimization. In: Heinkenschloss M, Biegler LT, Ghattas O, Bloemen Waanders B (eds) Large-scale PDE-constrained optimization. Lecture notes in computational science and engineering, vol 30. Springer, Berlin, pp 331–339Google Scholar
  20. 20.
    Matthias S, Müller F (2003) Asymmetric pores in a silicon membrane acting as massively parallel brownian ratchets. Lett Nat 424: 53–57CrossRefGoogle Scholar
  21. 21.
    Mittal R, Iaccarino G (2005) Immersed boundary methods. Annu Rev Fluid Mech 37: 239–261CrossRefMathSciNetGoogle Scholar
  22. 22.
    Morton GM (1966) A computer oriented geodetic data base and a new technique in file sequencing. Technical report, IBM Ltd., Ottawa, OntarioGoogle Scholar
  23. 23.
    Neckel T (2009) The PDE framework Peano: an environment for efficient flow simulations. Verlag Dr. Hut, MünchenGoogle Scholar
  24. 24.
    Sagan H (1994) Space-filling curves. Springer, New YorkzbMATHGoogle Scholar
  25. 25.
    Samet H (1984) The quadtree and related hierarchical data structures. ACM Comput Surv 16(2): 187–260CrossRefMathSciNetGoogle Scholar
  26. 26.
    Sampath RS, Adavani SS, Sundar H, Lashuk I, Biros G (2008) Dendro: parallel algorithms for multigrid and amr methods on 2:1 balanced octrees. In: SC ’08: proceedings of the 2008 ACM/IEEE conference on supercomputing, Piscataway, NJ, USA. IEEE Press, New York, pp 1–12Google Scholar
  27. 27.
    Sundar H, Sampath RS, Biros G (2008) Bottom-up construction and 2:1 balance refinement of linear octrees in parallel. SIAM J Sci Comput 30(5): 2675–2708zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Tomé MF, McKee S (1994) GENSMAC: a computational marker and cell method for free surface flows in general domains. J Comput Phys 110: 171–186zbMATHCrossRefGoogle Scholar
  29. 29.
    Tu T, O’Hallaron DR, Ghattas O (2005) Scalable parallel octree meshing for terascale applications. In: SC ’05: proceedings of the 2005 ACM/IEEE conference on supercomputing, Washington, DC, USA. IEEE Computer Society, New York, p 4Google Scholar
  30. 30.
    Turek S, Schäfer M (1996) Benchmark computations of laminar flow around a cylinder. In: Hirschel EH (ed) Flow simulation with high-performance computers II, NNFM, vol 52. Vieweg, BraunschweigGoogle Scholar
  31. 31.
    Vandevoorde D, Josuttis N (2003) C++ templates—the complete guide. Addison-Wesley, ReadingGoogle Scholar
  32. 32.
    Weinzierl T (2009) A framework for parallel PDE solvers on multiscale adaptive Cartesian grids. Verlag Dr. Hut, MünchenGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Hans-Joachim Bungartz
    • 1
  • Miriam Mehl
    • 1
    Email author
  • Tobias Neckel
    • 1
  • Tobias Weinzierl
    • 1
  1. 1.Technische Universität MünchenGarchingGermany

Personalised recommendations