Advertisement

Computational Mechanics

, Volume 45, Issue 2–3, pp 227–243 | Cite as

Electromechanics of the heart: a unified approach to the strongly coupled excitation–contraction problem

  • Serdar GöktepeEmail author
  • Ellen Kuhl
Original Paper

Abstract

This manuscript is concerned with a novel, unified finite element approach to fully coupled cardiac electromechanics. The intrinsic coupling arises from both the excitation-induced contraction of cardiac cells and the deformation-induced generation of current due to the opening of ion channels. In contrast to the existing numerical approaches suggested in the literature, which devise staggered algorithms through distinct numerical methods for the respective electrical and mechanical problems, we propose a fully implicit, entirely finite element-based modular approach. To this end, the governing differential equations that are coupled through constitutive equations are recast into the corresponding weak forms through the conventional isoparametric Galerkin method. The resultant non-linear weighted residual terms are then consistently linearized. The system of coupled algebraic equations obtained through discretization is solved monolithically. The put-forward modular algorithmic setting leads to an unconditionally stable and geometrically flexible framework that lays a firm foundation for the extension of constitutive equations towards more complex ionic models of cardiac electrophysiology and the strain energy functions of cardiac mechanics. The performance of the proposed approach is demonstrated through three-dimensional illustrative initial boundary-value problems that include a coupled electromechanical analysis of a biventricular generic heart model.

Keywords

Coupled problems Cardiac electromechanics Excitation–contraction Finite elements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aliev RR, Panfilov AV (1996) A simple two-variable model of cardiac excitation. Chaos, Solitons Fractals 7: 293–301CrossRefGoogle Scholar
  2. 2.
    Beeler GW, Reuter H (1977) Reconstruction of the action potential of ventricular myocardial fibres. J Physiol 268: 177–210Google Scholar
  3. 3.
    Bers DM (2002) Cardiac excitationcontraction coupling. Nature 415: 198–205CrossRefGoogle Scholar
  4. 4.
    Clayton RH, Panfilov AV (2008) A guide to modelling cardiac electrical activity in anatomically detailed ventricles. Progr Biophys Mol Biol 96: 19–43CrossRefGoogle Scholar
  5. 5.
    Fenton F, Karma A (1998) Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: filament instability and fibrillation. Chaos Interdiscipl J Nonlinear Sci 8: 20–27zbMATHCrossRefGoogle Scholar
  6. 6.
    Fenton FH, Cherry EM, Hastings HM, Evans SJ (2002) Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity. Chaos Interdiscipl J Nonlinear Sci 12: 852–892CrossRefGoogle Scholar
  7. 7.
    Fitzhugh R (1961) Impulses and physiological states in theoretical models of nerve induction. Biophys J 1: 455–466CrossRefGoogle Scholar
  8. 8.
    Göktepe S, Kuhl E (2009) Computational modeling of cardiac electrophysiology: A novel finite element approach. Int J Numer Methods Eng 79: 156–178zbMATHCrossRefGoogle Scholar
  9. 9.
    Göktepe S, Wong J, Kuhl E (2009) Atrial and ventricular fibrillation—computational simulation of spiral waves in cardiac tissue. Arch Appl Mech. doi: 10.1007/s00419-009-0384-0 Google Scholar
  10. 10.
    Hodgkin A, Huxley A (1952) A quantitative description of membrane current and its application to excitation and conduction in nerve. J Physiol 117: 500–544Google Scholar
  11. 11.
    Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Phil Trans Ser A, Math Phys Eng Sci 367(1902):3445–3475. PMID: 19657007CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Keener JP, Sneyd J (1998) Mathematical physiology. Springer, New YorkzbMATHGoogle Scholar
  13. 13.
    Keldermann R, Nash M, Panfilov A (2007) Pacemakers in a reaction–diffusion mechanics system. J Stat Phys 128: 375–392zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kerckhoffs R, Healy S, Usyk T, McCulloch A (2006) Computational methods for cardiac electromechanics. Proc IEEE 94: 769–783CrossRefGoogle Scholar
  15. 15.
    Klabunde RE (2005) Cardiovascular physiology concepts. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  16. 16.
    Kohl P, Hunter P, Noble D (1999) Stretch-induced changes in heart rate and rhythm: Clinical observations, experiments and mathematical models. Progr Biophys Mol Biol 71: 91–138CrossRefGoogle Scholar
  17. 17.
    Kotikanyadanam M, Göktepe S, Kuhl E (2009) Computational modeling of electrocardiograms: a finite element approach towards cardiac excitation. Commun Numer Methods Eng. doi: 10.1002/cnm.1273 Google Scholar
  18. 18.
    Luo CH, Rudy Y (1991) A model of the ventricular cardiac action potential. depolarization, repolarization, and their interaction. Circ Res 68: 1501–1526Google Scholar
  19. 19.
    Malmivuo J, Plonsey R (1995) Bioelectromagnetism. Oxford University Press, OxfordGoogle Scholar
  20. 20.
    Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc IRE 50: 2061–2070CrossRefGoogle Scholar
  21. 21.
    Nash MP, Hunter PJ (2000) Computational mechanics of the heart from tissue structure to ventricular function. J Elast 61: 113–141zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Nash MP, Panfilov AV (2004) Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Progr Biophys Mol Biol 85: 501–522CrossRefGoogle Scholar
  23. 23.
    Nickerson D, Nash M, Nielsen P, Smith N, Hunter P (2006) Computational multiscale modeling in the IUPS physiome project: modeling cardiac electromechanics. IBM J Res Dev 50: 617–630CrossRefGoogle Scholar
  24. 24.
    Nickerson D, Smith N, Hunter P (2005) New developments in a strongly coupled cardiac electromechanical model. Europace 7: S118–127CrossRefGoogle Scholar
  25. 25.
    Niederer SA, Smith NP (2008) An improved numerical method for strong coupling of excitation and contraction models in the heart. Progr Biophys Mol Biol 96: 90–111CrossRefGoogle Scholar
  26. 26.
    Nielsen PM, Grice IJL, Smaill BH, Hunter PJ (1991) Mathematical model of geometry and fibrous structure of the heart. Am J Physiol 260: H1365–1378Google Scholar
  27. 27.
    Noble D (1962) A modification of the Hodgkin–Huxley equations applicable to purkinje fibre action and pacemaker potentials. J Physiol 160: 317–352Google Scholar
  28. 28.
    Opie LH (2004) Heart physiology: from cell to circulation. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  29. 29.
    Panfilov AV, Keldermann RH, Nash MP (2005) Self-organized pacemakers in a coupled reaction-diffusion-mechanics system. Phys Rev Lett 95:258,104–1–258,014–4. PMID: 16384515CrossRefGoogle Scholar
  30. 30.
    Panfilov AV, Keldermann RH, Nash MP (2007) Drift and breakup of spiral waves in reaction diffusion mechanics systems. Proc Natl Acad Sci 104: 7922–7926CrossRefGoogle Scholar
  31. 31.
    Plank G, Burton RA, Hales P, Bishop M, Mansoori T, Bernabeu MO, Garny A, Prassl AJ, Bollensdorff C, Mason F, Mahmood F, Rodriguez B, Grau V, Schneider JE, Gavaghan D, Kohl P (2009) Generation of histo-anatomically representative models of the individual heart: tools and application. Phil Trans R Soc A 367: 2257–2292CrossRefzbMATHGoogle Scholar
  32. 32.
    Pope AJ, Sands GB, Smaill BH, LeGrice IJ (2008) Three-dimensional transmural organization of perimysial collagen in the heart. Am J Physiol Heart Circ Physiol 295(3): H1243–1252CrossRefGoogle Scholar
  33. 33.
    Pullan AJ, Buist ML, Cheng LK (2005) Mathematical modeling the electrical activity of the heart. World Scientific, SingaporeGoogle Scholar
  34. 34.
    Rogers JM (2002) Wave front fragmentation due to ventricular geometry in a model of the rabbit heart. Chaos (Woodbury, N.Y.) 12:779–787. PMID: 12779606CrossRefGoogle Scholar
  35. 35.
    Rogers JM, McCulloch AD (1994) Nonuniform muscle fiber orientation causes spiral wave drift in a finite element model of cardiac action potential propagation. J Cardiovasc Electrophysiol 5: 496–509CrossRefGoogle Scholar
  36. 36.
    Rohmer D, Sitek A, Gullberg GT (2007) Reconstruction and visualization of fiber and laminar structure in the normal human heart from ex vivo diffusion tensor magnetic resonance imaging (DTMRI) data. Invest Radiol 42: 777–789CrossRefGoogle Scholar
  37. 37.
    Sachse FB (2004) Computational cardiology: modeling of Anatomy, electrophysiology, and mechanics. Springer, BerlinzbMATHGoogle Scholar
  38. 38.
    Sainte-Marie J, Chapelle D, Cimrman R, Sorine M (2006) Modeling and estimation of the cardiac electromechanical activity. Comput Struct 84: 1743–1759CrossRefMathSciNetGoogle Scholar
  39. 39.
    Sermesant M, Rhode K, Sanchez-Ortiz G, Camara O, Andriantsimiavona R, Hegde S, Rueckert D, Lambiase P, Bucknall C, Rosenthal E, Delingette H, Hill D, Ayache N, Razavi R (2005) Simulation of cardiac pathologies using an electromechanical biventricular model and XMR interventional imaging. Med Image Anal 9: 467–480CrossRefGoogle Scholar
  40. 40.
    Spencer AJM (1971) Theory of invariants. In: Eringen A (eds). Continuum Physics, vol 1. Academic Press, New YorkGoogle Scholar
  41. 41.
    Tusscher KHWJT, Panfilov AV (2008) Modelling of the ventricular conduction system. Progr Biophys Mol Biol 96: 152–170CrossRefGoogle Scholar
  42. 42.
    Usyk TP, LeGrice IJ, McCulloch AD (2002) Computational model of three-dimensional cardiac electromechanics. Comput Vis Sci 4: 249–257zbMATHCrossRefGoogle Scholar
  43. 43.
    Yin FC, Chan CC, Judd RM (1996) Compressibility of perfused passive myocardium. Am J Physiol Heart Circ Physiol 271(5): H1864–1870Google Scholar
  44. 44.
    Zheng Z, Croft J, Giles W, Mensah G (2001) Sudden cardiac death in the United States. Circulation 104: 2158–2163CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Departments of Mechanical Engineering and BioengineeringStanford UniversityStanfordUSA

Personalised recommendations