Advertisement

Computational Mechanics

, Volume 46, Issue 1, pp 83–89 | Cite as

Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement

  • Murat Manguoglu
  • Kenji Takizawa
  • Ahmed H. Sameh
  • Tayfun E. Tezduyar
Original Paper

Abstract

Computation of incompressible flows in arterial fluid mechanics, especially because it involves fluid–structure interaction, poses significant numerical challenges. Iterative solution of the fluid mechanics part of the equation systems involved is one of those challenges, and we address that in this paper, with the added complication of having boundary layer mesh refinement with thin layers of elements near the arterial wall. As test case, we use matrix data from stabilized finite element computation of a bifurcating middle cerebral artery segment with aneurysm. It is well known that solving linear systems that arise in incompressible flow computations consume most of the time required by such simulations. For solving these large sparse nonsymmetric systems, we present effective preconditioning techniques appropriate for different stages of the computation over a cardiac cycle.

Keywords

Arterial fluid mechanics Incompressible flows Boundary layer mesh refinement Preconditioning techniques Nested iterative schemes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2004) Influence of wall elasticity on image-based blood flow simulation. Jpn Soc Mech Eng J Ser A 70: 1224–1231 (in Japanese)Google Scholar
  2. 2.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized space–time formulation. Comput Methods Appl Mech Eng 195: 1885–1895zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38: 482–490zbMATHCrossRefGoogle Scholar
  4. 4.
    Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Influence of wall elasticity in patient-specific hemodynamic simulations. Comput Fluids 36: 160–168zbMATHCrossRefGoogle Scholar
  6. 6.
    Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space–time finite elements: arterial fluid mechanics. Int J Numer Methods Fluids 54: 901–922zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—dependence of the effect on the aneurysm shape. Int J Numer Methods Fluids 54: 995–1009zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2008) Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique. Int J Numer Methods Fluids 57: 601–629zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43: 3–37zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43: 151–159zbMATHCrossRefGoogle Scholar
  11. 11.
    Tezduyar TE, Schwaab M, Sathe S (2008) Sequentially-coupled arterial fluid–structure interaction (SCAFSI) technique. Comput Methods Appl Mech Eng. doi: 10.1016/j.cma.2008.05.024
  12. 12.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid–structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Comput Methods Appl Mech Eng. doi: 10.1016/j.cma.2008.08.020
  13. 13.
    Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng. doi: 10.1016/j.cma.2009.04.015
  14. 14.
    Takizawa K, Christopher J, Tezduyar TE, Sathe S (2009) Space–time finite element computation of arterial fluid–structure interactions with patient-specific data. Commun Numer Methods Eng. doi: 10.1002/cnm.1241
  15. 15.
    Tezduyar TE, Takizawa K, Christopher J (2009) Multiscale sequentially-coupled arterial fluid–structure interaction (SCAFSI) technique”. In: Hartmann S, Meister A, Schaefer M, Turek S (eds) International workshop on fluid–structure interaction—theory, numerics and applications. Kassel University Press, KasselGoogle Scholar
  16. 16.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2009) Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms. Commun Numer Methods Eng. doi: 10.1002/cnm.1289
  17. 17.
    Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26: 27–36CrossRefGoogle Scholar
  18. 18.
    Tezduyar TE, Aliabadi SK, Behr M, Mittal S (1994) Massively parallel finite element simulation of compressible and incompressible flows. Comput Methods Appl Mech Eng 119: 157–177zbMATHCrossRefGoogle Scholar
  19. 19.
    Mittal S, Tezduyar TE (1994) Massively parallel finite element computation of incompressible flows involving fluid–body interactions. Comput Methods Appl Mech Eng 112: 253–282zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows—fluid–structure interactions. Int J Numer Methods Fluids 21: 933–953zbMATHCrossRefGoogle Scholar
  21. 21.
    Johnson AA, Tezduyar TE (1997) Parallel computation of incompressible flows with complex geometries. Int J Numer Methods Fluids 24: 1321–1340zbMATHCrossRefGoogle Scholar
  22. 22.
    Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23: 130–143zbMATHCrossRefGoogle Scholar
  23. 23.
    Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Eng 190: 321–332zbMATHCrossRefGoogle Scholar
  24. 24.
    Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J, Accorsi M (2000) Parachute fluid–structure interactions: 3-D computation. Comput Methods Appl Mech Eng 190: 373–386zbMATHCrossRefGoogle Scholar
  25. 25.
    Tezduyar T, Osawa Y (2001) Fluid–structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191: 717–726zbMATHCrossRefGoogle Scholar
  26. 26.
    Ohayon R (2001) Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems. Comput Methods Appl Mech Eng 190: 3009–3019zbMATHCrossRefGoogle Scholar
  27. 27.
    Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70: 58–63zbMATHCrossRefGoogle Scholar
  28. 28.
    Tezduyar TE, Sathe S, Keedy R, Stein K (2004) Space–time techniques for finite element computation of flows with moving boundaries and interfaces. In: Gallegos S, Herrera I, Botello S, Zarate F, Ayala G (eds) Proceedings of the III international congress on numerical methods in engineering and applied science, CD-ROM, Monterrey, MexicoGoogle Scholar
  29. 29.
    Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193: 2019–2032zbMATHCrossRefGoogle Scholar
  30. 30.
    van Brummelen EH, de Borst R (2005) On the nonnormality of subiteration for a fluid–structure interaction problem. SIAM J Sci Comput 27: 599–621zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Michler C, van Brummelen EH, de Borst R (2005) An interface Newton–Krylov solver for fluid–structure interaction. Int J Numer Methods Fluids 47: 1189–1195zbMATHCrossRefGoogle Scholar
  32. 32.
    Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195: 2002–2027zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Methods Appl Mech Eng 195: 5743–5753zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Tezduyar TE, Sathe S, Stein K, Aureli L (2006) Modeling of fluid–structure interactions with the space–time techniques. In: Bungartz H-J, Schafer M (eds) Fluid–structure interaction. Lecture notes in computational science and engineering, vol 53. Springer, Berlin, pp 50–81Google Scholar
  35. 35.
    Dettmer W, Peric D (2006) A computational framework for fluid–structure interaction: finite element formulation and applications. Comput Methods Appl Mech Eng 195: 5754–5779zbMATHCrossRefGoogle Scholar
  36. 36.
    Khurram RA, Masud A (2006) A multiscale/stabilized formulation of the incompressible Navier–Stokes equations for moving boundary flows and fluid–structure interaction. Comput Mech 38: 403–416zbMATHCrossRefGoogle Scholar
  37. 37.
    Kuttler U, Forster C, Wall WA (2006) A solution for the incompressibility dilemma in partitioned fluid–structure interaction with pure Dirichlet fluid domains. Comput Mech 38: 417–429CrossRefGoogle Scholar
  38. 38.
    Bletzinger K-U, Wuchner R, Kupzok A (2006) Algorithmic treatment of shells and free form-membranes in FSI. In: Bungartz H-J, Schafer M (eds) Fluid–structure interaction. Lecture notes in computational science and engineering, vol 53. Springer, Berlin, pp 336–355Google Scholar
  39. 39.
    Masud A, Bhanabhagvanwala M, Khurram RA (2007) An adaptive mesh rezoning scheme for moving boundary flows and fluid–structure interaction. Comput Fluids 36: 77–91zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Sawada T, Hisada T (2007) Fuid–structure interaction analysis of the two dimensional flag-in-wind problem by an interface tracking ALE finite element method. Comput Fluids 36: 136–146zbMATHCrossRefGoogle Scholar
  41. 41.
    Wall WA, Genkinger S, Ramm E (2007) A strong coupling partitioned approach for fluid–structure interaction with free surfaces. Comput Fluids 36: 169–183zbMATHCrossRefGoogle Scholar
  42. 42.
    Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54: 855–900zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Kuttler U, Wall WA (2008) Fixed-point fluid–structure interaction solvers with dynamic relaxation. Comput Mech 43: 61–72CrossRefGoogle Scholar
  44. 44.
    Dettmer WG, Peric D (2008) On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction. Comput Mech 43: 81–90zbMATHCrossRefGoogle Scholar
  45. 45.
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid– structure interaction modeling with moving-mesh methods. Comput Mech 43: 39–49zbMATHCrossRefGoogle Scholar
  46. 46.
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Fluid–structure interaction modeling of ringsail parachutes. Comput Mech 43: 133–142zbMATHCrossRefGoogle Scholar
  47. 47.
    Sathe S, Tezduyar TE (2008) Modeling of fluid–structure interactions with the space–time finite elements: contact problems. Comput Mech 43: 51–60zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Manguoglu M, Sameh AH, Tezduyar TE, Sathe S (2008) A nested iterative scheme for computation of incompressible flows in long domains. Comput Mech 43: 73–80zbMATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28: 1–44zbMATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94: 339–351zbMATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94: 353–371zbMATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575zbMATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2009) Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Comput Mech (submitted)Google Scholar
  54. 54.
    Cuthill E, McKee J (1969) Reducing the bandwidth of sparse symmetric matrices. In: Proceedings of the 1969 24th national conference. ACM Press, New York, pp 157–172Google Scholar
  55. 55.
    Baggag A, Sameh A (2004) A nested iterative scheme for indefinite linear systems in particulate flows. Comput Methods Appl Mech Eng 193: 1923–1957zbMATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Sameh A, Manguoglu M, Sathe S, Tezduyar TE (2007) A nested iterative scheme for nonsymmetric linear systems. In: Onate E, Papadrakakis M, Schrefler B (eds) Coupled problems 2007. CIMNE, BarcelonaGoogle Scholar
  57. 57.
    Sameh A, Manguoglu M, Sathe S, Pausewang J, Tezduyar TE (2007) Iterative techniques with banded preconditioners for fluid mechanics computations over long domains. In: Onate E, Garcia J, Bergan P, Kvamsdal T (eds) Marine 2007. CIMNE, BarcelonaGoogle Scholar
  58. 58.
    Sameh AH, Manguoglu M, Sathe S, Pausewang J, Tezduyar TE (2007) Iterative schemes for time accurate solution of flow in long narrow domains. In: Proceedings of the third Asian-Pacific congress on computational mechanics (CD-ROM), Kyoto, JapanGoogle Scholar
  59. 59.
    Manguoglu M, Sameh AH, Saied F, Tezduyar TE, Sathe S (2009) Preconditioning techniques for nonsymmetric linear systems in computation of incompressible flows. J Appl Mech 76: 021204CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Murat Manguoglu
    • 1
  • Kenji Takizawa
    • 2
  • Ahmed H. Sameh
    • 1
  • Tayfun E. Tezduyar
    • 2
  1. 1.Department of Computer SciencePurdue UniversityWest LafayetteUSA
  2. 2.Mechanical EngineeringRice University, MS 321HoustonUSA

Personalised recommendations