Advertisement

Computational Mechanics

, Volume 45, Issue 1, pp 45–59 | Cite as

Numerical investigations of foam-like materials by nested high-order finite element methods

  • H. -G. Sehlhorst
  • R. Jänicke
  • A. Düster
  • E. Rank
  • H. Steeb
  • S. Diebels
Open Access
Review Article

Abstract

In this paper we present a multiscale framework suited for geometrically nonlinear computations of foam-like materials applying high-order finite elements (p-FEM). This framework is based on a nested finite element analysis (FEA) on two scales, one nonlinear boundary value problem on the macroscale and k independent nonlinear boundary value problems on the microscale allowing for distributed computing. The two scales are coupled by a numerical projection and homogenization procedure. On the microscale the foam-like structures are discretized by high-order continuum-based finite elements, which are known to be very efficient and robust with respect to locking effects. In our numerical examples we will discuss in detail three characteristic test cases (simple shear, tension and bending). Special emphasis is placed on the material’s deformation-induced anisotropy and the macroscopic load-displacement behavior.

Keywords

Cellular foams Homogenization Large deformations 

Notes

Acknowledgments

The support by the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged (RA 624/16-1, DI 430/7-1). The authors wish to thank the reviewers for their helpful comments.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Anderson WB, Lakes RS (1994) Size effects due to Cosserat elasticity and surface damage in closed-cell polymethacrylimide foam. J Mat Sci 29: 6413–6419CrossRefGoogle Scholar
  2. 2.
    Bonet J, Wood RD (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, New YorkzbMATHGoogle Scholar
  3. 3.
    Diebels S, Steeb H (2002) The size effect in foams and its theoretical and numerical investigation. Proc R Soc Lond A 458: 2869–2883zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Diebels S, Steeb H (2003) Stress and couple stress in foams. Comp Mat Sci 28: 714–722CrossRefGoogle Scholar
  5. 5.
    Düster A (2001) High order finite elements for three-dimensional, thin-walled nonlinear continua. PhD thesis, Lehrstuhl für Bauinformatik, Fakultät für Bauingenieur- und Vermessungswesen, Technische Universität MünchenGoogle Scholar
  6. 6.
    Düster A, Bröker H, Rank E (2001) The p-version of the finite element method for three-dimensional curved thin walled structures. Int J Numer Meth Eng 52: 673–703zbMATHCrossRefGoogle Scholar
  7. 7.
    Düster A, Hartmann S, Rank E (2003) p-fem applied to finite isotropic hyperelastic bodies. Comput Methods Appl Mech Eng 192: 5147–5166zbMATHCrossRefGoogle Scholar
  8. 8.
    Düster A, Rank E (2001) The p-version of the finite element method compared to an adaptive h-version for the deformation theory of plasticity. Comput Methods Appl Mech Eng 190: 1925–1935zbMATHCrossRefGoogle Scholar
  9. 9.
    Düster A, Rank E (2002) A p-version finite element approach for two- and three-dimensional problems of the J 2 flow theory with non-linear isotropic hardening. Int J Numer Methods Eng 53: 49–63zbMATHCrossRefGoogle Scholar
  10. 10.
    Düster A, Scholz D, Rank E (2007) pq-Adaptive solid finite elements for three-dimensional plates and shells. Comput Methods Appl Mech Eng 197: 243–254zbMATHCrossRefGoogle Scholar
  11. 11.
    Ebinger T, Diebels S, Steeb H (2007) Numerical homogenization techniques applied to growth and remodelling phenomena. Comp Mech 39: 815–830zbMATHCrossRefGoogle Scholar
  12. 12.
    Ebinger T, Steeb H, Diebels S (2004) Modeling macroscopic extended continua with the aid of numerical homogenization schemes. Comput Mat Sci 32: 337–347CrossRefGoogle Scholar
  13. 13.
    Eringen AC, Suhubi ES (1964) Nonlinear theory of simple micro-elastic solids-I. Int J Eng ng Sci 2: 189–203zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Eringen C (1999) Microcontinuum field theories, vol 1: foundations and solids. Springer, BerlinGoogle Scholar
  15. 15.
    Feyel F (1998) Application du calcul parallèle aux modèles à grand nombre de variables internes. PhD-thesis, Ecole National Supérieure des Mines de Paris, Paris, FranceGoogle Scholar
  16. 16.
    Feyel F (2003) A multilevel finite element method FE2 to describe the response of highly non-linear structures using generalized continua). Comput Methods Appl Mech Eng 192: 3233–3244zbMATHCrossRefGoogle Scholar
  17. 17.
    Feyel F, Chaboche JL (2000) FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fiber SiC/Ti composite materials. Comput Methods Appl Mech Eng 183: 309–330zbMATHCrossRefGoogle Scholar
  18. 18.
    Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge solid state science series. Cambridge University Press, CambridgeGoogle Scholar
  19. 19.
    Hain M (2007) Computational homogenization of micro-structural Damage due to Frost in Hardened Cement Paste. PhD thesis, Institut für Baumechanik und Numerische Mechanik, Leibniz-Universität HannoverGoogle Scholar
  20. 20.
    Hartmann S (2003) Finite-Elemente Berechnung inelastischer Kontinua—Interpretation als Algebro-Differentialgleichungssysteme. Postdoctoral thesis, Institut für Mechanik, Universität KasselGoogle Scholar
  21. 21.
    Heißerer U, Hartmann S, Düster A, Bier W, Yosibash Z, Rank E (2008) p-fem for finite deformation powder compaction. Comput Methods Appl Mech Eng 197: 727–740zbMATHCrossRefGoogle Scholar
  22. 22.
    Heißerer U, Hartmann S, Düster A, Yosibash Z (2008) On volumetric locking-free behavior of p-version finite elements under finite deformations. Commun Numer Methods Eng 24: 1019–1032zbMATHGoogle Scholar
  23. 23.
    Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11: 357–372zbMATHCrossRefGoogle Scholar
  24. 24.
    Hohe J, Becker W (2003) Effective mechanical behavior of hyperelastic honeycombs and two-dimensional model foams at finite strain. Int J Mech Sci 45: 891–913zbMATHCrossRefGoogle Scholar
  25. 25.
    Kafadar CB, Eringen C (1971) Micropolar media—I: the classical theory. Int J Eng Sci 9: 271–305CrossRefGoogle Scholar
  26. 26.
    Koschnick F (2004) Geometrische Locking-Effekte bei Finiten Elementen und ein allgemeines Konzept zu ihrer Vermeidung. PhD thesis, Lehrstuhl für Statik, Technische Universität MünchenGoogle Scholar
  27. 27.
    Kouznetsova VG (2002) Computational homogenization for the multi-scale analysis of multi-phase material. PhD-thesis, Technische Universiteit Eindhoven, The NetherlandsGoogle Scholar
  28. 28.
    Lakes RS (1995) Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. In: Mühlhaus HB (eds) Continuum methods for materials with microstructures. Wiley, Chichester, pp 1–25Google Scholar
  29. 29.
    Laroussi M, Sab K, Alaoui A (2002) Foam mechanics: nonlinear response of an elastic 3D-periodic microstructure. Int J Solids Struct 39: 3599–3623zbMATHCrossRefGoogle Scholar
  30. 30.
    Miehe C (1996) Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity. Comput Methods Appl Mech Eng 134: 223–240zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Nemat-Nasser S, Hori M (1997) Micromechanics. North-Holland, AmsterdamGoogle Scholar
  32. 32.
    Nübel V, Düster A, Rank E (2007) An rp-adaptive finite element method for elastoplastic problems. Comput Mech 39: 557–574zbMATHCrossRefGoogle Scholar
  33. 33.
    Ohno N, Okumura D, Noguchi H (2002) Microscopic symmetric bifurcation condition of cellular solids based on a homogenization theory of finite deformation. J Mech Phys Solids 50: 1125–1153zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Onck PR (2002) Cosserat modeling of cellular solids. C R Mecanique 330: 717–722zbMATHCrossRefGoogle Scholar
  35. 35.
    Saiki I, Terada K, Ikeda K, Hori M (2002) Appropriate number of unit cells in a representative volume element for micro- structural bifurcation encountered in a multi-scale modeling. Comput Methods Appl Mech Eng 191: 2561–2585zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Schröder J (2000) Homogenisierungsmethoden der nichtlinearen Kontinuumsmechanik unter Beachtung von Stabilitätsproblemen. Habilitationsschrift, Institut für Mechanik (Bauwesen), Number I-7, Universität StuttgartGoogle Scholar
  37. 37.
    Szabó BA, Babuška I (1991) Finite element analysis. Wiley, New YorkzbMATHGoogle Scholar
  38. 38.
    Szabó BA, Düster A, Rank E (2004) The p-version of the finite element method. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, vol 1, chap. 5. Wiley, New York, pp 119–139Google Scholar
  39. 39.
    Szabó BA, Sahrmann GJ (1988) Hierarchic plate and shell models based on p-extension. Int J Numer Methods Eng 26: 1855–1881zbMATHCrossRefGoogle Scholar
  40. 40.
    Tekoğlu C (2007) Size effects in cellular solids. PhD thesis, Rijksuniversiteit GroningenGoogle Scholar
  41. 41.
    Triantafyllidis N, Schraad MW (1998) Onset of failure in aluminum honeycombs under general in-plane loading. J Mech Phys Solids 46: 1089–1124zbMATHCrossRefGoogle Scholar
  42. 42.
    Wang Y, Cuitiño AM (2000) Three-dimensional nonlinear open-cell foams with large deformations. J Mech Phys Solids 48: 961–988zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Wriggers P (2001) Nichtlineare Finite-Element-Methoden. Springer, BerlinzbMATHGoogle Scholar
  44. 44.
    Yvonnet J, Zahrouni H, Potier-Ferry M (2007) A model reduction method for the post-buckling analysis of cellular microstructures. Comput Methods Appl Mech Eng 197: 265–280zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Zhu HX, Mills NJ, Knott JF (1997) Analysis of the high strain compression of open-cell foams. J Mech Phys Solids 45: 1875–1904zbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • H. -G. Sehlhorst
    • 1
  • R. Jänicke
    • 2
  • A. Düster
    • 1
  • E. Rank
    • 3
  • H. Steeb
    • 4
    • 5
  • S. Diebels
    • 2
  1. 1.Numerische Strukturanalyse mit Anwendungen in der Schiffstechnik, Schwarzenbergstrasse 95 cTechnische Universität Hamburg-HarburgHamburgGermany
  2. 2.Lehrstuhl für Technische MechanikUniversität des SaarlandesSaarbrückenGermany
  3. 3.Lehrstuhl für Computation in EngineeringTechnische Universität MünchenMünchenGermany
  4. 4.Lehrstuhl für KontinuumsmechanikRuhr-Universität BochumBochumGermany
  5. 5.Multi Scale MechanicsTS, CTW, UTwenteEnschedeThe Netherlands

Personalised recommendations