Computational Mechanics

, Volume 44, Issue 4, pp 481–491 | Cite as

Space adaptive finite element methods for dynamic Signorini problems

  • Heribert Blum
  • Andreas RademacherEmail author
  • Andreas Schröder
Original Paper


Space adaptive techniques for dynamic Signorini problems are discussed. For discretisation, the Newmark method in time and low order finite elements in space are used. For the global discretisation error in space, an a posteriori error estimate is derived on the basis of the semi-discrete problem in mixed form. This approach relies on an auxiliary problem, which takes the form of a variational equation. An adaptive method based on the estimate is applied to improve the finite element approximation. Numerical results illustrate the performance of the presented method.


Dynamic Signorini problem A posteriori error estimation Mesh refinement Finite element method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

ESM 1 (MPG 6.16 MB)

ESM 2 (MPG 5.95 MB)


  1. 1.
    Weinert K, Blum H, Jansen T, Rademacher A (2007) Simulation based optimization of the NC-shape grinding process with toroid grinding wheels. Prod Eng 1(3): 245–252CrossRefGoogle Scholar
  2. 2.
    Johnson C (1993) Discontinuous Galerkin finite element methods for second order hyperbolic problems. Comput Methods Appl Mech Eng 107: 117–129zbMATHCrossRefGoogle Scholar
  3. 3.
    Li X, Wiberg N-E (1998) Implementation and adaptivity of a space–time finite element method for structural dynamics. Comput Methods Appl Mech Eng 156: 211–229zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Aubry D, Lucas D, Tie B (1999) Adaptive strategy for transient/coupled problems: applications to thermoelasticity and elastodynamics. Comput Methods Appl Mech Eng 176: 41–50zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bangerth W, Rannacher R (1999) Finite element approximation of the acoustic wave equation: error control and mesh adaptation. East-West J Numer Math 7(4): 263–282zbMATHMathSciNetGoogle Scholar
  6. 6.
    Xie YM, Zienkiewicz OC (1991) A simple error estimator and adaptive time stepping procedure for dynamic analysis. Earth Eng Struct Dyn 20: 871–887CrossRefGoogle Scholar
  7. 7.
    Li X, Wiberg N-E, Zeng LF (1992) A posteriori local error estimation and adaptive time-stepping for newmark integration in dynamic analysis. Earth Eng Struct Dyn 21: 555–571CrossRefGoogle Scholar
  8. 8.
    Bornemann FA, Schemann M (1998) An adaptive Rothe method for the wave equation. Comput Vis Sci 1: 137–144zbMATHCrossRefGoogle Scholar
  9. 9.
    Adjerid S (2002) A posteriori finite element error estimation for second-order hyperbolic problems. Comput Methods Appl Mech Eng 191: 4699–4719zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Bernadi C, Süli E (2005) Time and space adaptivity for the second-order wave equation. Math Models Methods Appl Sci 15(2): 199–225CrossRefMathSciNetGoogle Scholar
  11. 11.
    Braess D (2005) A posteriori error estimators for obstacle problems—another look. Numer Math 101(3): 415–421zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Schröder A (2006) Fehlerkontrollierte adaptive h- und hp-Finite-Elemente-Methoden für Kontaktprobleme mit Anwendungen in der Fertigungstechnik. Bayreuther Math Schr 78. available also via
  13. 13.
    Johnson C (1992) Adaptive finite element methods for the obstacle problem. Math Models Methods Appl Sci 2: 483–487zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Ainsworth M, Oden JT, Lee CY (1993) Local a posteriori error estimators for variational inequalities. Numer Methods Partial Differ Equ 9: 23–33zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Hoppe RHW, Kornhuber R (1994) Adaptive multilevel methods for obstacle problems. SIAM J Numer Anal 31: 301–323zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Chen Z, Nochetto R (2000) Residual type a posteriori error estimates for elliptic obstacle problems. Numer Math 84: 527–548zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Veeser A (2001) Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM J Numer Anal 39: 146–167zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Nochetto RH, Siebert KG, Veeser A (2003) Pointwise a posteriori error control for elliptic obstacle problems. Numer Math 95: 163–195zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Bartels S, Carstensen C (2004) Averaging techniques yield reliable a posteriori finite element error control for obstacle problems. Numer Math 99: 225–249zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Suttmeier FT (2005) On a direct approach to adaptive fe-discretisations for elliptic variational inequalities. J Numer Math 13: 73–80zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Wohlmuth BI (2007) An a posteriori error estimator for two-body contact problems on non-matching meshes. J Sci Comput 33: 25–45zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Braess D, Carstensen C, Hoppe RHW (2007) Convergence analysis of a conforming adaptive finite element method for an obstacle problem. Numer Math 107: 455–471zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Wriggers P, Vu Van T, Stein E (1990) Finite element formulation of large deformation impact-contact problems with friction. Comput Struct 37(3): 319–331zbMATHCrossRefGoogle Scholar
  24. 24.
    Bathe KJ, Chaudhary AB (1986) A solution method for static and dynamic analysis of three-dimensional contact problems with friction. Comput Struct 24(6): 855–873zbMATHCrossRefGoogle Scholar
  25. 25.
    McDevitt TW, Laursen TA (2000) A Mortar-finite element formulation for frictional contact problems. Int J Numer Methods Eng 48(10): 1525–1547zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Puso M, Laursen TA (2002) A 3D contact smoothing method using gregory patches. Int J Numer Methods Eng 54(8): 1161–1194zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Hager C, Hüeber S, Wohlmuth BI (2008) A stable energy conserving approach for frictional contact problems based on quadrature formulas. Int J Numer Methods Eng 73: 205–225zbMATHCrossRefGoogle Scholar
  28. 28.
    Deuflhard P, Krause R, Ertel S (2007) A contact-stabilized Newmark method for dynamical contact problems. Int J Numer Methods Eng 73(9): 1274–1290CrossRefMathSciNetGoogle Scholar
  29. 29.
    Armero F, Petőcz E (1998) Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Comput Methods Appl Mech Eng 158: 269–300zbMATHCrossRefGoogle Scholar
  30. 30.
    Laursen TA, Chawla V (1997) Design of energy conserving algorithms for frictionless dynamic contact problems. Int J Numer Methods Eng 40: 863–886zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Kane C, Repetto EA, Ortiz M, Marsden JE (1999) Finite element analysis of nonsmooth contact. Comput Methods Appl Mech Eng 180: 1–26zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Pandolfi A, Kane C, Marsden JE, Ortiz M (2002) Time- discretized variational formulation of non-smooth frictional contact. Int J Numer Methods Eng 53: 1801–1829zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Talaslidis D, Panagiotopoulos PD (1982) A linear finite element Approach to the Solution of the variational inequalities arising in contact problems of structural dynamics. Int J Numer Methods Eng 18: 1505–1520zbMATHCrossRefGoogle Scholar
  34. 34.
    Czekanski A, Meguid SA (2001) Analysis of dynamic frictional contact problems using variational inequalities. Finite Elem Anal Des 37: 6861–6879CrossRefMathSciNetGoogle Scholar
  35. 35.
    Rademacher A (2005) Finite-Elemente-Diskretisierungen für dynamische Probleme mit Kontakt. Diploma-Thesis, University of Dortmund. Available via
  36. 36.
    Laursen TA (2002) Computational contact and impact mechanics. Springer, BerlinzbMATHGoogle Scholar
  37. 37.
    Wriggers P (2002) Computational contact mechanics. Wiley, ChichesterGoogle Scholar
  38. 38.
    Kikuchi N, Oden JT (1988) Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM Stud Appl Math, SIAM, PhiladelphiaGoogle Scholar
  39. 39.
    Evans LC (1998) Partial differential equations. American Mathematical Society, ProvidencezbMATHGoogle Scholar
  40. 40.
    Panagiotopoulos PD (1985) Inequality problems in mechanics and applications, convex and nonconvex energy functions. Birkhäuser, BaselzbMATHGoogle Scholar
  41. 41.
    Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div ASCE 85(EM3): 67–94Google Scholar
  42. 42.
    Hughes TJR (2000) The finite element method. Dover Publications, Inc, MineolaGoogle Scholar
  43. 43.
    Cea J (1978) Lectures on optimization—theory and algorithms. Springer, BerlinzbMATHGoogle Scholar
  44. 44.
    Ekeland I, Temam R (1976) Convex analysis and variational problems. Studies in mathematics and its applications. North-Holland, AmsterdamGoogle Scholar
  45. 45.
    Schröder A (2009) Error control in h- and hp-adaptive FEM for Signorini’s problem. Institute for Mathematics, Humboldt Universität zu Berlin (ISSN 0863-0976), Preprint 09-05. Available via
  46. 46.
    Verfürth R (1996) A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley and Teubner, ChichesterzbMATHGoogle Scholar
  47. 47.
    Ainsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. Wiley, New YorkzbMATHGoogle Scholar
  48. 48.
    Hermann M (2004) Numerik gewöhnlicher Differentialgleichungen. Oldenbourg Verlag, MünchenzbMATHGoogle Scholar
  49. 49.
    Klapproth C, Schiela A, Deuflhard, P (2009) Consistency Results for the Contact-Stabilized Newmark Method. Zuse-Institut Berlin, Preprint 09-06. Available via
  50. 50.
    Bangerth W, Rannacher R (2003) Adaptive finite element methods for differential equations. Birkhäuser, BaselzbMATHGoogle Scholar
  51. 51.
    Schmidt A, Siebert K G (2004) Design of adaptive finite element software. Lecture notes in computational science and engineering. Springer, BerlinGoogle Scholar
  52. 52.
    Bangerth W, Rannacher R (2001) Adaptive finite element techniques for the acoustic wave equation. J Comp Acoust 9(2): 575–591CrossRefMathSciNetGoogle Scholar
  53. 53.
    Schmich M, Vexler B (2008) Adaptivity with dynamic meshes for space–time finite element discretizations of parabolic equations. SIAM J Sci Comput 30(1): 369–393zbMATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Blum H, Jansen T, Rademacher A, Weinert K (2008) Finite elements in space and time for dynamic contact problems. Int J Numer Meth Eng 76: 1632–1644CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Heribert Blum
    • 1
  • Andreas Rademacher
    • 1
    Email author
  • Andreas Schröder
    • 2
  1. 1.Institute of Applied MathematicsTechnische Universität DortmundDortmundGermany
  2. 2.Department of MathematicsHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations