Computational Mechanics

, 44:377 | Cite as

A Ck continuous generalized finite element formulation applied to laminated Kirchhoff plate model

Original Paper

Abstract

A generalized finite element method based on a partition of unity (POU) with smooth approximation functions is investigated in this paper for modeling laminated plates under Kirchhoff hypothesis. The shape functions are built from the product of a Shepard POU and enrichment functions. The Shepard functions have a smoothness degree directly related to the weight functions adopted for their evaluation. The weight functions at a point are built as products of C edge functions of the distance of such a point to each of the cloud boundaries. Different edge functions are investigated to generate Ck functions. The POU together with polynomial global enrichment functions build the approximation subspace. The formulation implemented in this paper is aimed at the general case of laminated plates composed of anisotropic layers. A detailed convergence analysis is presented and the integrability of these functions is also discussed.

Keywords

Generalized finite element method Partition of unity method Kirchhoff plate FEM Ck continuous approximation functions 

References

  1. 1.
    Amarantuga K, Williams JR, Quan S, Weis J (1994) Wavelet-Galerkin solutions for one-dimensional partial differential equations. Int J Numer Methods Eng 37: 2703–2716CrossRefGoogle Scholar
  2. 2.
    Atluri SN, Zhu T (1998) New meshless local Petrov-Galerkin (MPLG) approach in computational mechanics. Comput Mech 22: 117–127MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Babuška I, Melenk JM (1995) The partition of unity method. Technical Note BN-1185, Institute for Physical Science and Technology, University of MarylandGoogle Scholar
  4. 4.
    Babuška I, Melenk JM (1996) The particion of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139: 289–314MATHCrossRefGoogle Scholar
  5. 5.
    Barros FB, Proença SPB, de Barcellos CS (2004) On error estimator and p-adaptivity in the generalized finite element method. Int J Numer Meth Eng 60: 2373–2398MATHCrossRefGoogle Scholar
  6. 6.
    Barros FB, de Barcellos CS, Duarte CA (2007) p-Adaptive C k generalized finite element method for arbitrary polygonal clouds. Comput Mech 41: 175–187CrossRefMATHGoogle Scholar
  7. 7.
    Beirãoda Veiga L, Niiranen J, Eternberg R (2007) A family of C 0 finite element for Kirchhoff plates I: error analysis. SIAM J Numer Anal 45: 2047–2071CrossRefMathSciNetGoogle Scholar
  8. 8.
    Belinha J, Dinis L (2006) Elasto-plastic analysis of plates by the element free Galerkin Method. Eng Comput 23: 525–551CrossRefGoogle Scholar
  9. 9.
    Belinha J, Dinis L (2006) Analysis of plates and laminates using the element free Galerkin method. Comput Struct 84: 1547–1559CrossRefGoogle Scholar
  10. 10.
    Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45: 601–620MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Belytschko T, Liu W, Singer M (1998) On adaptivity and error criteria for mesh free methods. In: Ladéveze P, Oden JT (eds) Adv Adaptive Comput Methods Mech 217–228Google Scholar
  12. 12.
    Belytschko T, Lu YY, Gu J (1993) Crack propagation by element free Galerkin methods. In: Advanced computational methods for material modeling, AMD vol 180/PVP vol 268. ASME, New York, pp 191–205Google Scholar
  13. 13.
    Bucciarelli LL, Dworsky N (1980) Sophie Germain. An essay in the history of the theory of elasticity. Reidel, DordrechtMATHGoogle Scholar
  14. 14.
    De S, Bathe KJ (2000) The method of finite spheres. Comput Mech 25: 329–345MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Dolbow J, Moës N, Belytschko T (2000) Modeling fracture in Mindlin-Reissner plates with the extended finite element method. Int J Solids Struct 37: 7161–7183MATHCrossRefGoogle Scholar
  16. 16.
    Donning BM, Liu WK (1998) Meshless methdos for shear-deformable beams and plates. Comput Methods Appl Mech Eng 152: 47–71MATHCrossRefGoogle Scholar
  17. 17.
    Duarte CA, Babuška I, Oden JT (2000) Generalized finite element method for three-dimensional structural mechanics problems. Comput Struct 77: 215–232CrossRefGoogle Scholar
  18. 18.
    Duarte CA, Kim DJ, Quaresma DM (2006) Arbitrarily smooth generalized element approximations. Comput Methods Appl Mech Eng 196: 33–56MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Duarte CA, Hamzeh ON, Liska TJ, Tworzyllo WW (2001) A generalized finite element method for the simulation of three- dimensional dynamic crack propagation. Comput Methods Appl Mech Eng 190: 2227–2262MATHCrossRefGoogle Scholar
  20. 20.
    Duarte CA, Oden JT (1995) hp Clouds—A meshless method to solve boundary value problems. TICAM report 95-05, University of TexasGoogle Scholar
  21. 21.
    Duarte CA, Oden JT (1996) hp Clouds—an hp meshless method. Numer Methods Partial Diff Equ 12: 673–705MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Duarte CA, Oden JT (1996) An h-p adaptive method using clouds. TICAM report 96-07, University of TexasGoogle Scholar
  23. 23.
    Dunavant DA (1985) High degree efficient symmetrical gaussian quadrature rules for the triangle. Int J Numer Methods Eng 21: 1129–1148MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Edwards HC (1996) C finite element basis functions. Technical Report, TICAM report 96-45. The University of Texas at AustinGoogle Scholar
  25. 25.
    Edwards HC (1997) A parallel infrastructure for scalable adaptive finite element methods and its application hp least squares C colocation. PhD dissertation, The University of Texas at Austin, Austin, TX, USAGoogle Scholar
  26. 26.
    Garcia O, Fancello EA, de Barcellos CS, Duarte CA (2000) hp-Clouds in Mindlin’s thick plate model. Int J Numer Methods Eng 47: 1381–1400MATHCrossRefGoogle Scholar
  27. 27.
    Gingold RA, Monaghan JJ (1982) Kernel estimates as a basis for general particle methods in hydrodynamics. J Comput Phys 46: 429–453MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Griebel M, Schweitzer MA (2000) A particle-partition of unity method for the solution of elliptic, parabolic and hyperbolic pdes. SIAM J Sci Comput 22: 853–890MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Kirchhoff GR (1850) Uber das Gleichgewicht und die Bewegung Einer Elastichen Scheibe. J Reine Angew Math 40: 51–88MATHGoogle Scholar
  30. 30.
    Krysl P, Belytschko T (1996) Analysis of thin plates by the element-free Galerkin method. Comput Mech 17: 26–35CrossRefMathSciNetGoogle Scholar
  31. 31.
    Krysl P, Belytschko T (1996) Analysis of thin shells by the element-free Galerkin method. Int J Solids Struct 33: 3057–3080MATHCrossRefGoogle Scholar
  32. 32.
    Liu WK, Jun S, Zhang Y (1995) Reproducing kernel particle methods. Int J Numer Methods Eng 20: 1081–1106MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Lu H, Li S, Simkins DC Jr, Liu WK, Cao J (2004) Reproducing Kernel Element Method. Part III: Generalized enrichment and applications. Comput Methods Appl Mech Eng 193: 989–1011MATHCrossRefGoogle Scholar
  34. 34.
    Melenk JM (1995) On generalized finite element methods. PhD Thesis, University of Maryland, College Park.Google Scholar
  35. 35.
    Moës N, Dolbow J, Belytschko T (1999) Elastic crack growth in finite elements without remeshing. Int J Numer Methods Eng 46: 131–150MATHCrossRefGoogle Scholar
  36. 36.
    Nicolazzi LC, Duarte CA, Fancello EA, de Barcellos CS (1997) hp-Clouds—a meshless method in boundary elements. Part II: implementation. Int J Boundary Element Methods Commun 8: 83–85Google Scholar
  37. 37.
    Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10: 307–318MATHCrossRefGoogle Scholar
  38. 38.
    Oden JT, Duarte CA, Zienkiewicz OC (1998) A new cloud-based hp finite element method. Comput Methods Appl Mech Eng 153: 117–126MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Reddy JN (1997) Mechanics of laminated composite plates and shells, 2nd edn. CRC Press, USAGoogle Scholar
  40. 40.
    Rvachev VL, Sheiko TI (1995) R-functions in boundary value problems in mechanics. Appl Mech Rev 48(4): 151–188CrossRefGoogle Scholar
  41. 41.
    Shapiro V (1991) Theory of R-functions and applications: a primer. Technical report TR91-1219, Computer Science Department, Cornell University, Ithaca, NYGoogle Scholar
  42. 42.
    Shepard D (1968) A two-dimensional function for irregularly spaced data. In: ACM National Conference, pp 517–524Google Scholar
  43. 43.
    Simkins DC Jr, Li S, Lu H, Liu WK (2004) Reproducing kernel element method. Part IV: Globally compatible C n(n ≧ 1) triangular hierarchy. Comput Methods Appl Mech Eng 193: 1013–1034MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Stoker JJ (1942) Mathematical problems connected with the plate bending and buckling of elastic plates. Bull Am Math Soc 48: 247–261MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Strouboulis T, Copps K, Babuska I (2001) The generalized finite element method. Comput Methods Appl Mech Eng 190: 4081–4193MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Sukumar N, Moran B, Belytschko T (1998) The natural element method. Int J Numer Methods Eng 43: 839–887MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Whitney JM (1987) Structural analysis of laminated anisotropic plates. Technomic Publications Inc, LancasterGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentFederal University of Santa CatarinaFlorianópolisBrazil
  2. 2.2122 Newmark Civil Engineering LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations