Computational Mechanics

, 44:247 | Cite as

An alternative collocation boundary element method for static and dynamic problems

  • Thomas Rüberg
  • Martin SchanzEmail author
Original Paper


A collocation boundary element formulation is presented which is based on a mixed approximation formulation similar to the Galerkin boundary element method presented by Steinbach (SIAM J Numer Anal 38:401–413, 2000) for the solution of Laplace’s equation. The method is also applicable to vector problems such as elasticity. Moreover, dynamic problems of acoustics and elastodynamics are included. The resulting system matrices have an ordered structure and small condition numbers in comparison to the standard collocation approach. Moreover, the employment of Robin boundary conditions is easily included in this formulation. Details on the numerical integration of the occurring regular and singular integrals and on the solution of the arising systems of equations are given. Numerical experiments have been carried out for different reference problems. In these experiments, the presented approach is compared to the common nodal collocation method with respect to accuracy, condition numbers, and stability in the dynamic case.


Collocation boundary element method Discontinuous elements Elastodynamics Robin boundary conditions 


  1. 1.
    Achenbach JD (2005) Wave propagation in elastic solids. Amsterdam, North-HollandGoogle Scholar
  2. 2.
    Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling S, McKenney A, Sorensen D (1999) LAPACK Users’ Guide. Society for Industrial and Applied Mathematics, 3rd ednGoogle Scholar
  3. 3.
    Bebendorf M, Rjasanow S (2003) Adaptive low-rank approximation of collocation matrices. Computing 70: 1–24zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Benzi M, Golub GH, Liesen J (2005) Numerical solution of saddle point problems. Acta Numer 14: 1–137zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Beskos DE (1987) Boundary element methods in dynamics analysis. Appl Mech Rev 40: 1–23CrossRefGoogle Scholar
  6. 6.
    Beskos DE (1997) Boundary element methods in dynamic analysis: part II (1986–1996). Appl Mech Rev 50(3): 149–197CrossRefGoogle Scholar
  7. 7.
    Courant R, Friedrichs K, Lewy H (1928) Über die partiellen Differenzengleichungen der mathematischen Physik. Math Ann 100: 32–74zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Duffy MG (1982) Quadrature over a pyramid or cube of inte- grands with a singularity at a vertex. SIAM J Numer Anal 19: 1260–1262zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dunavant DA (1985) High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int J Numer Methods Eng 21: 1129–1148zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gaul L, Kögl M, Wagner M (2003) Boundary element methods for engineers and scientists. Springer, HeidelbergzbMATHGoogle Scholar
  11. 11.
    Golub GH, van Loan CF (1996) Matrix computations. Johns Hopkins University Press, BaltimorezbMATHGoogle Scholar
  12. 12.
    Graff KF (1991) Wave motions in elastic solids. Dover, New YorkGoogle Scholar
  13. 13.
    Hartmann F (1989) Introduction to boundary elements. Theory and applications. Springer, HeidelbergzbMATHGoogle Scholar
  14. 14.
    Higham NJ (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation. ACM Trans Math Softw 14: 381–396zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Johnston PR (2000) Semi-sigmoidal transformations for evaluating weakly singular boundary element integrals. Int J Numer Methods Eng 47: 1709–1730zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kielhorn L, Schanz M (2007) CQM based symmetric Galerkin BEM: regularization of strong and hypersingular kernels in 3-d elastodynamics. Int J Numer Methods Eng. doi: 10.1002/nme.2381
  17. 17.
    Krommer AR, Ueberhuber CW (1998) Computational integration. SIAMGoogle Scholar
  18. 18.
    Kupradze VD, Gegelia TG, Basheleishvili MO, Burchuladze TV (1979) Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity. Amsterdam, North-HollandzbMATHGoogle Scholar
  19. 19.
    Lachat JC, Watson JO (1976) Effective numerical treatment of boundary integral equations: a formulation for three-dimensional elastostatics. Int J Numer Methods Eng 10: 991–1005zbMATHCrossRefGoogle Scholar
  20. 20.
    Lambert JD (1990) Numerical methods for ordinary differential systems. Wiley, New YorkGoogle Scholar
  21. 21.
    Love AEH (1944) Treatise on the mathematical theory of elasticity. Dover, New YorkzbMATHGoogle Scholar
  22. 22.
    Lubich C (1988) Convolution quadrature and discretized operational calculus I & II. Numer Math 52:129–145; 413–425Google Scholar
  23. 23.
    Mansur WJ (1983) A time-stepping technique to solve wave propagation problems using the boundary element method. PhD thesis, University of SouthamptonGoogle Scholar
  24. 24.
    Mantič V (1993) A new formula for the c-matrix in the Somigliana identity. J Elast 33: 193–201Google Scholar
  25. 25.
    Of G (2006) BETI-Gebietszerlegungsmethoden mit schnellen Randelementverfahren und Anwendungen. PhD thesis, University of StuttgartGoogle Scholar
  26. 26.
    París F, Cañas J (1997) Boundary element method. Oxford University Press, OxfordzbMATHGoogle Scholar
  27. 27.
    Patterson C, Elsebai NAS (1982) A regular boundary method using non-conforming elements for potentials in three dimensions. In: Brebbia CA (ed) Boundary element methods in engineering, pp 112–126Google Scholar
  28. 28.
    Patterson C, Sheikh MA (1981) Non-conforming boundary elements for stress analysis. In: Brebbia CA (ed) Boundary element methods, pp 137–152Google Scholar
  29. 29.
    Patterson C, Sheikh MA (1984) Interelement continuity in the boundary element method. In: Brebbia CA (eds) Topics in boundary element research. Springer, Heidelberg, pp 121–141Google Scholar
  30. 30.
    Pekeris CL (1955) The seismic surface pulse. Proc Natl Am Soc 41: 469–480zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2002) Numerical Recipes in C++. Cambridge University Press, CambridgeGoogle Scholar
  32. 32.
    Rjasanow S, Steinbach O (2007) The fast solution of boundary integral equations. Springer, HeidelbergzbMATHGoogle Scholar
  33. 33.
    Rüberg T (2008) Non-conforming FEM/BEM coupling in time domain, volume 3 of computation in engineering and science. Verlag der Technischen Universität GrazGoogle Scholar
  34. 34.
    Schanz M (2001) Wave propagation in viscoelastic and poroelastic continua—A boundary element approach. Springer, HeidelbergzbMATHGoogle Scholar
  35. 35.
    Schanz M, Antes H (1997) A new visco- and elastodynamic time domain boundary element formulation. Comput Mech 20: 452–459zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Schanz M, Kielhorn L (2005) Dimensionless variables in a Poroe lastodynamic time domain bounday element formulation. Build Res J 53(2–3): 175–189Google Scholar
  37. 37.
    Schwab C, Wendland WL (1992) On numerical cubature of singular surface integrals in boundary element methods. Numer Math 62: 343–369zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Steinbach O (2003) Stability estimates for hybrid domain decomposition methods. Springer, HeidelbergzbMATHGoogle Scholar
  39. 39.
    Steinbach O (2000) Mixed approximations for boundary elements. SIAM J Numer Anal 38: 401–413zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Steinbach O (1998) Fast solution techniques for the symmetric boundary element method in linear elasticity. Comput Methods Appl Mech Eng 157: 185–191zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Steinbach O (2008) Numerical approximation methods for elliptic boundary value problems. Springer, HeidelbergzbMATHGoogle Scholar
  42. 42.
    Wheeler LT, Sternberg E (1968) Some theorems in classical elastodynamics. Arch Ration Mech Anal 31: 51–90MathSciNetGoogle Scholar
  43. 43.
    Yan G, Lin F-B (1994) Treatment of corner node problems and its singularity. Eng Anal Bound Elem 13: 75–81CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institute for Structural AnalysisGraz University of TechnologyGrazAustria
  2. 2.Institute of Applied MechanicsGraz University of TechnologyGrazAustria

Personalised recommendations