Advertisement

Computational Mechanics

, Volume 43, Issue 5, pp 701–713 | Cite as

Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellations

  • F. FritzenEmail author
  • T. Böhlke
  • E. Schnack
Original Paper

Abstract

In this paper a method for the generation of three-dimensional periodic meshes for the numerical simulation of polycrystalline aggregates is presented. The mesh construction is based on Voronoi and Hardcore Voronoi tessellations of random point seeds. Special emphasis is paid on the periodicity of the mesh topologies which leads to favorable numerical properties for the determination of effective properties using unit cells. The mesh generation algorithm is able to produce high quality meshes at low computational costs. Based on unit cell simulations with different but statistically equivalent microstructures, the effective linear elastic properties of polycrystals consisting of grains with a cubic symmetry are determined. The numerical results are compared with first-, third- and fifth-order bounds and experimental data. Numerical simulations show the efficiency of the proposed homogenization technique.

Keywords

Cubic crystal symmetry Finite element method Periodic mesh generation Polycrystalline aggregate Voronoi tessellation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams B, Olson T (1998) The mesostructure—properties linkage in polycrystals. Progress Mater Sci 43: 1–88CrossRefGoogle Scholar
  2. 2.
    Aurenhammer F (1991) Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput Surv 23(3): 345–405CrossRefGoogle Scholar
  3. 3.
    Bangerth W, Hartmann R, Kanschat G (2007) Deal. II. A general-purpose object-oriented finite element library. ACM Trans Math Softw 33(4):24. http://doi.acm.org/10.1145/1268776.1268779 Google Scholar
  4. 4.
    Bangerth W, Hartmann R, Kanschat G. Deal. II Differential equations analysis library, technical reference. URL:http://www.dealii.org
  5. 5.
    Barbe F, Decker L, Jeulin D, Cailletaud G (2001a) Intergranular and intragranular behavior of polycrystalline aggregates Part. 1: F.E. Model. Int J Plast 17: 513–536zbMATHCrossRefGoogle Scholar
  6. 6.
    Barbe F, Forest S, Cailletaud G (2001b) Intergranular and intragranular behavior of polycrystalline aggregates. Part 2: Results. Int J Plast 17: 537–563zbMATHCrossRefGoogle Scholar
  7. 7.
    Barber C, Dobkin D, Huhdanpaa H (1996) The Quickhull algorithm for convex hulls. ACM Trans Math Softw 22(4): 469–483zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Beran M, Mason T, Adams B, Olsen T (1996) Bounding elastic constants of an orthotropic polycrystal using measurements of the microstructure. J Mech Phys Solids 44(9): 1543–1563CrossRefGoogle Scholar
  9. 9.
    Bhandari Y, Sarkar S, Groeber M, Uchic M, Dimiduk D, Ghosh S (2007) 3D polycrystalline microstructure reconstruction from FIB generated serial sections for FE analysis. Comput Mater Sci 41: 222–235CrossRefGoogle Scholar
  10. 10.
    Böhlke T, Jöchen K, Kraft O, Löhe D, Schulze V (2008) Elastic Properties of Polycrystalline Microcomponents. Preprint series of the Chair of Continuum Mechanics, University Karlsruhe (TH) (No. 2008-1)Google Scholar
  11. 11.
    Cailletaud G, Forest S, Jeulin D, Feyel F, Galliet I, Mounoury V, Quilici S (2003) Some elements of microstructural mechanics. Comput Mater Sci 27: 351–374CrossRefGoogle Scholar
  12. 12.
    Dederichs P, Zeller R (1973) Variational treatment of the elastic constants of disordered materials. Zeitschrift Phys 259: 103–116CrossRefGoogle Scholar
  13. 13.
    Diard O, Leclercq S, Rousselier G, Cailletaud G (2005) Evaluation of finite element based analysis of 3D multicrystalline aggregates plasticity Application to crystal plasticity model identification and the study of stress and strain fields near grain boundaries. Int J Plast 21: 691–722zbMATHCrossRefGoogle Scholar
  14. 14.
    Ferrié E, Buffière J-Y, Ludwig W, Gravouil A, Lyndon E (2006) Fatigue crack propagation: in situ visualization using X-ray microtomography and 3D simulation using the extended finite element method. Acta Mater 54(4): 1111–1122CrossRefGoogle Scholar
  15. 15.
    Gervois A, Troadec J, Lemaitre J (1992) Universal properties of Voronoi tessellations of hard discs. J Phys A 25: 6169–6177CrossRefGoogle Scholar
  16. 16.
    Groeber M, Haley B, Uchic M, Dimiduk D, Ghosh S (2006) 3D reconstruction and characterization of polycrystalline microstructure using a FIB-SEM. Mater Characterization 57: 259–273CrossRefGoogle Scholar
  17. 17.
    Groeber M, Ghosh S, Uchic M, Dimiduk D (2008) A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 1. Statistical characterization. Acta Mater 56: 1257–1273CrossRefGoogle Scholar
  18. 18.
    Groeber M, Ghosh S, Uchic M, Dimiduk D (2008) A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 2: Synthetic structure generation. Acta Materialia 56: 1274–1287CrossRefGoogle Scholar
  19. 19.
    Kanit T (2003) Notation de Volume Elementaire Répres entatif pour les Matéri aux Hétero gènes: Approche Statistique et Numéri que. PhD Thesis, Centre des Matéri aux P.M. FOURT de l’Ecole des Mines de Paris, Evry Cedex, May 2003Google Scholar
  20. 20.
    Kröner E (1977) Bounds for the effective elastic properties of disordered materials. J Mech Phys Solids 25: 134–155Google Scholar
  21. 21.
    Kumar S, Kurtz S (1994) Simulation of material microstructure using a 3d Voronoi tesselation: Calculation of effective thermal expansion coefficient of polycrystalline materials. Acta Metallurgica et Materialia 42(12): 3917–3927CrossRefGoogle Scholar
  22. 22.
    Kumar S, Kurtz S, Agarwala V (1996) Micro-stresss distribution within polycrystalline aggregate. Acta Mech 114: 203–216zbMATHCrossRefGoogle Scholar
  23. 23.
    Lauridson E, Schmidt S, Nielsen S, Margulies L, Poulsen H, Jensen D (2006) Non-destructive characterization of recrystallization kinetics using three-dimensional X-ray diffraction microscopy. Scripta Mater 55: 51–56CrossRefGoogle Scholar
  24. 24.
    Lautensack C (2007) Random Laguerre Tesselations. PhD Thesis, Universität Karlsruhe (TH)Google Scholar
  25. 25.
    Lautensack C, Sych T (2006) 3d image analysis of open foams using random tesselations. Image Anal Stereol 25: 87–93Google Scholar
  26. 26.
    Lautensack C, Gietzsch M, Godehardt M, Schladitz K (2008) Modelling a ceramic foam using locally adaptable morphology. J Microsc (accepted)Google Scholar
  27. 27.
    Murnaghan F (1962) The unitary and rotation groups. Lecture on applied mathematics. Spartan Books, WashingtonGoogle Scholar
  28. 28.
    Nygards M (2003) Number of grains necessary to homogenize elastic materials with cubic symmetry. Mech Mater 35: 1049–1057CrossRefGoogle Scholar
  29. 29.
    Ostoja-Starzewski M (2006) Material spatial randomness: From statistical to representative volume element. Probab Eng Mech 21: 112–132CrossRefGoogle Scholar
  30. 30.
    Paufler P, Schulze G (1978) Physikalische Grundlagen mechanischer Festkoerpereigenschaften. Vieweg, BraunschweigGoogle Scholar
  31. 31.
    Rychlewski J (1995) Unconventional approach to linear elasticity. Arch Mech 47(2): 149–171zbMATHMathSciNetGoogle Scholar
  32. 32.
    Shewchuk J (1996) Engineering a 2D quality mesh generator and delaunay triangulator. In: Lin M, Manocha D (eds) Applied computational geometry: towards geometric engineering. Springer, Heidelberg, pp 203–222CrossRefGoogle Scholar
  33. 33.
    Si H, Gaertner K (2005) Meshing Piecewise Linear Complexes by Constrained Delaunay Tetrahedralizations. In: Proceedings of the 14th international meshing roundtable, pp 147–163, Sept. 2005Google Scholar
  34. 34.
    Simmons G, Wang H (1971) Single crystal elastic constants and calculated aggregate properties: a handbook. The MIT Press, CambridgeGoogle Scholar
  35. 35.
    Swaminathan S, Ghosh S, Pagano J (2006) Statistically equivalent representative volume element for unidirectional composite microstructures: Part I—without damage. J Composite Mater 40(7): 583–604CrossRefGoogle Scholar
  36. 36.
    Williams W, Smith C (1952) A study of grain shape in an aluminium alloy and other applications of stereoscopic microradiology. Trans Am Inst Mining Eng 194: 755–765Google Scholar
  37. 37.
    Zhao Y, Tryon R (2004) Automatic 3-d simulation and micro-stress distribution of polycrystalline metallic materials. Comp Methods Appl Mech Eng 193: 3919–3934zbMATHCrossRefGoogle Scholar
  38. 38.
    Zhodi T, Wriggers P (2005) Introduction to computational micromechanics. Springer, HeidelbergGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Chair of Continuum Mechanics, Institute of Engineering MechanicsKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations