Computational Mechanics

, Volume 43, Issue 5, pp 585–601 | Cite as

A EVI-space-time Galerkin method for dynamics at finite deformation in porous media

  • Zhiyun Chen
  • Holger Steeb
  • Stefan DiebelsEmail author
Original Paper


We present an EVI-space-time Galerkin method applied to dynamic analysis in fluid-saturated porous materials. The physical model is based on a materially incompressible solid skeleton saturated by a barotropic fluid. The deformation of the solid matrix is described by a compressible Neo-Hookean material law. The model equations are formulated in the Lagrangian description of the solid skeleton. In respect of the numerical modeling, by use of the Embedded Velocity Integration (EVI) technique, the governing set of second-order time-dependent equations is transformed to a first-order one, which is in turn solved by a time-discontinuous Galerkin method. In addition, a stability factor α, describing the embedded integration scheme of the displacement–velocity relation, is introduced. Depending on the chosen value of the α factor, the stability property of the overall solution can be enforced. Numerical experiments demonstrate the superior performance of the proposed method with respect to accuracy and low numerical damping in comparison with conventional time-stepping schemes.


Porous media Finite deformation Space-time FEM Discontinuous Galerkin method Embedded velocity Integration method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Terzaghi K (1923) Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der hydromechanischen Spannungserscheinungen, Sitzungsberichte der Akademie der Wissenschaften in Wien. Mathematisch-naturwissenschaftliche Klasse 132: 125–138Google Scholar
  2. 2.
    Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12: 155–164CrossRefGoogle Scholar
  3. 3.
    Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J Acoust Soc Am 29: 168–178CrossRefMathSciNetGoogle Scholar
  4. 4.
    Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J Acoust Soc Am 29: 179–191CrossRefMathSciNetGoogle Scholar
  5. 5.
    Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33: 1482–1498zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Truesdell CA, Toupin R (1960) The classical field theories. In: Flügge S (eds) (Herausgeber), Handbuch der Physik III/1. Springer, BerlinGoogle Scholar
  7. 7.
    Aktin RJ, Craine RE (1976) Continuum theories of mixtures: basic theory and historical developement. Quart J Mech Appl Math 29(2): 209–244CrossRefMathSciNetGoogle Scholar
  8. 8.
    Bowen RM (1976) Theory of mixture. Continuum Phys III: 1–127MathSciNetGoogle Scholar
  9. 9.
    Bowen RM (1982) Compressible porous media models by use of the theory of mixtures. Int J Eng Sci 20: 697–735zbMATHCrossRefGoogle Scholar
  10. 10.
    Bedford A, Drumheller DS (1973) Recent advances: theories of immiscible and structured mixtures. Int J Eng Sci 21: 863–960CrossRefMathSciNetGoogle Scholar
  11. 11.
    Boer R (2000) Theory of porous media: highlights in the historical development and current state. Springer, BerlinzbMATHGoogle Scholar
  12. 12.
    Borja RI, Alarcón E (1995) A mathematical framework for finite strain elastoplastic consolidation. Part 1: balance laws, variational formulation and linearization. Comp Meth Appl Mech Eng 159: 145–171CrossRefGoogle Scholar
  13. 13.
    Diebels S, Ehlers W (1996) Dynamic analysis of a fully saturated porous medium accounting for geometrical and material non-linearities. Int J Numer Meth Eng 39: 81–97zbMATHCrossRefGoogle Scholar
  14. 14.
    Advani SH, Lee TS, Lee JK, Kim CS (1993) Hygrothermomechanical evaluation of porous media under finite deformation. Part I—finite element formulations. Int J Numer Meth Eng 36: 147–160zbMATHCrossRefGoogle Scholar
  15. 15.
    Kim CS, Lee TS, Advani SH, Lee JK (1993) Hygrothermomechanical evaluation of porous media under finite deformation. PartII—model validations and field simulations. Int J Numer Meth Eng 36: 161–179CrossRefGoogle Scholar
  16. 16.
    Larsson J, Larsson R (2002) Non-linear analysis of nearly saturated porous media: theoretical and numerical formulation. Comp Meth Appl Mech Eng 191: 3885–3907zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Li C, Borja R, Regueiro R (2004) Dynamics of porous media at finite strain. Comp Meth Appl Mech Eng 193: 3837–3870zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Ehlers W (2002) Foundations of multiphasic and porous materials. In: Ehlers W, Bluhm J(eds) Porous media: theory, experiments and numerical applications. Springer, Berlin, pp 3–86Google Scholar
  19. 19.
    Diebels S (2000) Mikropolare Zweiphasenmodelle: Modellierung auf der Basis der Theorie Poröser Medien, Habilitationsschrift, Institut für Mechanik (Bauwesen), Nr. II-4, Universität StuttgartGoogle Scholar
  20. 20.
    Ehlers W, Diebels S (1995) Dynamic deformations in the theory of fluid-saturated porous solid materials. In: Parker DF, England AH (eds) Proc. of IUTAM symp.: anisotropy, inhomogeneity and nonlinearity in solid mechanics. Kluwer, Dordrecht, pp 241–246Google Scholar
  21. 21.
    Ehlers W, Eipper G (1999) Finite elastic deformations in liquid-saturated and empty porous solids. Transport Porous Med 34: 179–191CrossRefMathSciNetGoogle Scholar
  22. 22.
    Eipper G (1998) Theorie und Numerik finiter elastischer Deformationen in fluidgesättigten porösen Festkörpern, Dissertation, Institut für Mechanik (Bauwesen), Lehrstuhl II, Universität StuttgartGoogle Scholar
  23. 23.
    Argyris JH, Scharpf DW (1969) Finite elements in space and time. Nucl Eng Des 10: 456–464CrossRefGoogle Scholar
  24. 24.
    Fried I (1969) Finite element analysis of time-dependent phenomena. AIAA J 7: 1170–1173zbMATHCrossRefGoogle Scholar
  25. 25.
    Hughes TJR, Hulbert GM (1988) Space-time finite element methods for elastodynamics: Formulations and error estimates. Comp Meth Appl Mech Eng 66: 339–363zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Hulbert G (1989) Space-time finite element methods for second order hyperbolic equations. PhD Thesis, Department of Mechanical Engineering, Stanford University, StanfordGoogle Scholar
  27. 27.
    Hulbert GM, Hughes GM (1990) Space-time finite element methods for second-order hyperbolic equations. Comp Meth Appl Mech Eng 84: 327–348zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Johnson C (1990) Adaptive finite element methods for diffusion and convection problems. Comp Meth Appl Mech Eng 82: 301–322zbMATHCrossRefGoogle Scholar
  29. 29.
    Reed WH, Hill TR: Triangular mesh methods for the neutron transport equation, Los Alamos Scientific Laboratory Report LA-UR-73-479Google Scholar
  30. 30.
    Cockburn B, Shu CW (1989) TVB Runge-Kutta local projection discontinuous Galerkin finite element methods for conservation laws. II: General framework. Math Comp 52: 411–435zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Cockburn B, Lin SY, Shu CW (1989) TVB Runge-Kutta local projection discontinuous Galerkin finite element methods for conservation laws III: one dimensional systems. J Comp Phys 84: 90–113zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Cockburn B, Hou S, Shu CW (1990) TVB Runge-Kutta local projection discontinuous Galerkin finite element methods for conservation laws. IV: The multidimensional case. Math Comp 54: 545–581zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Chen Z, Steeb H, Diebels S (2006) A time-discontinuous Galerkin method for the dynamical analysis of porous media. Int J Numer Anal Meth Geomech 30: 1113–1134CrossRefGoogle Scholar
  34. 34.
    Chen Z, Steeb H, Diebels S (2008) A new hybrid velocity integration method applied to elastic wave propagation. Int J Numer Meth Eng 74(1): 56–79CrossRefMathSciNetGoogle Scholar
  35. 35.
    Chen Z, Steeb H, Diebels S: Dynamic analysis of porous materials: numerical modeling with a space-time FEM. In: Proc Appl Math MechGoogle Scholar
  36. 36.
    Ehlers W, Bluhm J (eds) (2002) Porous media. Springer, BerlinzbMATHGoogle Scholar
  37. 37.
    Boer R (2000) Theory of porous media. Springer, BerlinzbMATHGoogle Scholar
  38. 38.
    Bowen RM (1980) Incompressible porous media models by use of the theory of mixtures. Int J Eng Sci 18: 1129–1148zbMATHCrossRefGoogle Scholar
  39. 39.
    de Boer R, Ehlers W (1986) Theorie der Mehrkomponentenkontinua mit Anwendung auf bodenmechanische Probleme. In: Forschungsberichte aus dem Fachbereich Bauwesen, vol 40, Universität-GH-EssenGoogle Scholar
  40. 40.
    Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Dover Publications Inc., New YorkzbMATHGoogle Scholar
  41. 41.
    Terzaghi K (1943) Theoretical soil mechanics. Wiley, New YorkGoogle Scholar
  42. 42.
    Markert B (2007) A constitutive approach to 3-d nonlinear fluid flow through finite deformable porous continua, with application to a high-porosity polyurethane foam. Transport Porous Med 70(3): 427–450CrossRefMathSciNetGoogle Scholar
  43. 43.
    Ellsiepen P (1999) Zeit- und Ortsadaptive Verfahren angewandt auf Mehrphasenprobleme poröser Medien, PhD-thesis, Institute of Applied Mechanics (CE), Chair II, University of StuttgartGoogle Scholar
  44. 44.
    Breuer S (1999) Quasi-static and dynamic behavior of saturated porous media with incompressible constituents. Transport Porous Med 34: 285–303CrossRefMathSciNetGoogle Scholar
  45. 45.
    Masud A, Hughes TJR (1997) A space-time Galerkin/least-squares finite element formulation of the navier-stokes equations for moving domain problems. Comp Meth Appl Mech Eng 146: 91–126zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Cockburn B (2003) Discontinuous Galerkin methods. Z Angew Math Mech 11: 731–754CrossRefMathSciNetGoogle Scholar
  47. 47.
    Zienkiewicz OC (1984) Coupled problems and their numerical solution. In: Lewis RW, Bettess P, Hinton E(eds) Numerical methods in coupled systems. Wiley, New York, pp 35–68Google Scholar
  48. 48.
    Wriggers P (1988) Konsistente Lineariserung in der Kontinuumsmechanik und ihre Anwendung auf die Finite-Element-Methode, Bericht Nr. F88/4 (1999) Institut für Baustatik und Numerische Mechanik, Univerität HonnoverGoogle Scholar
  49. 49.
    Eriksson K, Estep D, Hansbo P, Johnson C (1996) Computational differential equations. Cambridge University Press, CambridgezbMATHGoogle Scholar
  50. 50.
    Gresho C, Lee RL (1979) Don’t suppress the wiggles-they’re telling you something, Finite Element Methods in Convection dominated Flows. ASME AME 34: 27–61MathSciNetGoogle Scholar
  51. 51.
    Wall WA (1999) Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen, Bericht Nr. 31 (1999) Institut für Baustatik der Universität StuttgartGoogle Scholar
  52. 52.
    Steeb H, Cirak F, Ramm E (2000) On local error estimators for non-self-adjoint boundary value problems. Z Angew Math Mech 507–508Google Scholar
  53. 53.
    Brooks AN, Hughes TJR (1982) Streamline upwind/petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comp Meth Appl Mech Eng 32: 199–259zbMATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Hughes TJR, Franca LP, Hulbert M (1989) A new finite element formulation for computational fluid dynamics: Viii. the Galerkin/Least-squares method for advective-diffusive equations. Comp Meth Appl Mech Eng 73: 173–189zbMATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Franca LP, Frey SL, Hughes TJR (1992) Stabilized finite element methods: I. application to the advective-diffusive model. Comp Meth Appl Mech Eng 95: 253–276zbMATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Cash JR (1979) Diagonally implicit Runge-Kutta formulae with error estimates. J Inst Maths Appl 24: 293–301zbMATHCrossRefGoogle Scholar
  57. 57.
    Bogacki P, Shampine LF (1989) A 3(2) pair of Runge-Kutta formulas. Appl Math Lett 2: 321–325zbMATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    Gibson LJ, Ashby LJ (1997) A space-time Galerkin/least-squares finite element formulation of the Navier–Stokes equations for moving domain problems. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Chair of Applied MechanicsSaarland UniversitySaarbrückenGermany
  2. 2.Faculty of Engineering Technology (CTW), Multi Scale MechanicsUniversity of TwenteEnschedeNetherlands

Personalised recommendations