Computational Mechanics

, Volume 43, Issue 1, pp 3–37 | Cite as

Isogeometric fluid-structure interaction: theory, algorithms, and computations

  • Y. Bazilevs
  • V. M. Calo
  • T. J. R. Hughes
  • Y. Zhang
Original Paper

Abstract

We present a fully-coupled monolithic formulation of the fluid-structure interaction of an incompressible fluid on a moving domain with a nonlinear hyperelastic solid. The arbitrary Lagrangian–Eulerian description is utilized for the fluid subdomain and the Lagrangian description is utilized for the solid subdomain. Particular attention is paid to the derivation of various forms of the conservation equations; the conservation properties of the semi-discrete and fully discretized systems; a unified presentation of the generalized-α time integration method for fluid-structure interaction; and the derivation of the tangent matrix, including the calculation of shape derivatives. A NURBS-based isogeometric analysis methodology is used for the spatial discretization and three numerical examples are presented which demonstrate the good behavior of the methodology.

Keywords

Blood flow Cardiovascular modeling Fluid-structure interaction Hyperelastic solids Incompressible fluids Isogeometric analysis Mesh movement Moving domains NURBS Shape derivatives Space-time Piola transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abedi P, Patracovici B, Haber RB (2006) A spacetime discontinuous Galerkin method for linearized elastodynamics with element-wise momentum balance. Comput Methods Appl Mech Eng 195: 3247–3273MATHCrossRefGoogle Scholar
  2. 2.
    Akkerman I, Bazilevs Y, Calo VM, Hughes TJR, Hulshoff S (2008) The role of continuity in residual-based variational multiscale modeling of turbulence. Comput Mech 41: 371–378CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197: 173–201CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bazilevs Y, Beiraoda Veiga L, Cottrell JA, Hughes TJR, Sangalli G (2006) Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math Models Methods Appl Sci 16: 1031–1090MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36: 12–26MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bazilevs Y, Michler C, Calo VM, Hughes TJR (2007) Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput Methods Appl Mech Eng 196: 4853–4862CrossRefMathSciNetGoogle Scholar
  8. 8.
    Bishop R, Goldberg S (1980) Tensor analysis on manifolds. Dover, New YorkGoogle Scholar
  9. 9.
    Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, BerlinMATHGoogle Scholar
  10. 10.
    Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32: 199–259MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Calo VM (2004) Residual-based multiscale turbulence modeling: finite volume simulation of bypass transistion. Ph.D. Thesis, Department of Civil and Environmental Engineering, Stanford UniversityGoogle Scholar
  12. 12.
    Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method. J Appl Mech 60: 371–75MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Cottrell JA, Reali A, Bazilevs Y, Hughes TJR (2006) Isogeometric analysis of structural vibrations. Comput Methods Appl Mech Eng 195: 5257–5297MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Cottrell JA, Reali A, Hughes TJR (2007) Studies of refinement and continuity in isogeometric structural analysis. Comput Methods Appl Mech Eng 196: 4160–4183CrossRefMathSciNetGoogle Scholar
  15. 15.
    Dettmer W, Perić D (2006) A computational framework for fluid-structure interaction: finite element formulation and applications. Comput Methods Appl Mech Eng 195: 5754–5779MATHCrossRefGoogle Scholar
  16. 16.
    Elguedj T, Bazilevs Y, Calo VM, Hughes TJR (2008) B-bar and F-bar projection methods for nearly incompressible linear and nonlinear elasticity and plasticity using higher-order NURBS elements. Comput Methods Appl Mech Eng 197: 2732–2762CrossRefGoogle Scholar
  17. 17.
    Farhat C, Geuzaine P, Grandmont C (2001) The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids. J Comput Phys 174(2): 669–694MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Farhat C, van der Zee K, Geuzaine P (2006) Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Comput Methods Appl Mech Eng 195: 1973–2001MATHCrossRefGoogle Scholar
  19. 19.
    Fernandez MA, Moubachir M (2005) A Newton method using exact jacobians for solving fluid-structure coupling. Comput Struct 83: 127–142CrossRefGoogle Scholar
  20. 20.
    Figueroa A, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Eng 195: 5685–5706MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Flanders H (1963) Differential forms with applications to the physical sciences. Academic Press, LondonMATHGoogle Scholar
  22. 22.
    Formaggia L, Nobile F (2005) Stability analysis of second-order time accurate schemes for ALE-FEM. Comput Methods Appl Mech Eng 193: 4097–4116CrossRefMathSciNetGoogle Scholar
  23. 23.
    Guillermin V, Pollack A (1974) Differential topology. Prentice-Hall, Englewood CliffsGoogle Scholar
  24. 24.
    Heil M, Hazel A, Boyle J (2008) Solvers for large-displacement fluid-structure interaction problems: segregated vs. monolithic approaches. Comput Mech. doi:10.1007/s00466-008-0270-6
  25. 25.
    Heywood JG, Rannacher R, Turek S (1996) Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int J Numer Methods Fluids 22: 325–352MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Holzapfel GA (2004) Computational biomechanics of soft biological tissue. In: Stein E, De Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, Solids and structures, chap s18, vol 2. Wiley, LondonGoogle Scholar
  27. 27.
    Holzapfel GA (2000) Nonlinear solid mechanics, a continuum approach for engineering. Wiley, ChichesterMATHGoogle Scholar
  28. 28.
    Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications, MineolaGoogle Scholar
  29. 29.
    Hughes TJR, Calo VM, Scovazzi G (2004) Variational and multiscale methods in turbulence. In: Gutkowski W, Kowalewski TA (eds) In Proceedings of the XXI International Congress of Theoretical and Applied Mechanics (IUTAM), Kluwer, pp 153–163Google Scholar
  30. 30.
    Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput. Methods Appl Mech Eng 194: 4135–4195MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Hughes TJR, Hulbert GM (1988) Space-time finite element methods for elastodynamics: formulations and error estimates. Comput Methods Appl Mech Eng 66: 339–363MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29: 329–349MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Hughes TJR, Wells GN (2005) Conservation properties for the Galerkin and stabilised forms of the advection-diffusion and incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 194: 1141–1159MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Hulbert GM, Hughes TJR (1990) Space-time finite element methods for second order hyperbolic equations. Comput Methods Appl Mech Eng 84: 327–348MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Idelsohn SR, Oñate E, Del Pin F, Calvo N (2006) Fluid-structure interaction using the particle finite element method. Comput Methods Appl Mech Eng 195: 2100–2123MATHCrossRefGoogle Scholar
  36. 36.
    Jansen KE, Whiting CH, Hulbert GM (1999) A generalized-α method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190: 305–319CrossRefMathSciNetGoogle Scholar
  37. 37.
    Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119: 73–94MATHCrossRefGoogle Scholar
  38. 38.
    Johnson AA, Tezduyar TE (1997) Parallel computation of incompressible flows with complex geometries. Int J Numer Methods Fluids 24: 1321–1340MATHCrossRefGoogle Scholar
  39. 39.
    Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23: 130–141MATHCrossRefGoogle Scholar
  40. 40.
    Johnson C (1987) Numerical solution of partial differential equations by the finite element method. Cambridge University Press, SwedenMATHGoogle Scholar
  41. 41.
    Johnson C, Nävert U, Pitkäranta J (1984) Finite element methods for linear hyperbolic problems. Comput Methods Appl Mech Eng 45: 285–312MATHCrossRefGoogle Scholar
  42. 42.
    Küttler U, Förster C, Wall WA (2006) A solution for the incompressibility dilemma in partitioned fluid-structure interaction with pure Dirichlet fluid domains. Comput Mech 38: 417–429CrossRefGoogle Scholar
  43. 43.
    Kuhl E, Hulshoff S, de Borst R (2003) An arbitrary Lagrangian Eulerian finite element approach for fluid-structure interaction phenomena. Int J Numer Methods Eng 57: 117–142MATHCrossRefGoogle Scholar
  44. 44.
    Lang S (1972) Differential manifolds. Addison-Wesley, ReadingMATHGoogle Scholar
  45. 45.
    Lang S (1995) Differential and riemannian manifolds (graduate texts in mathematics, vol. 160). Springer, HeidelbergGoogle Scholar
  46. 46.
    Le Tallec P, Mouro J (2001) Fluid structure interaction with large structural displacements. Comput Methods Appl Mech Eng 190:3039–3068MATHCrossRefGoogle Scholar
  47. 47.
    Marsden JE, Hughes TJR (1993) Mathematical foundations of elasticity. Dover Publications Inc., New YorkGoogle Scholar
  48. 48.
    Masud A, Hughes TJR (1997) A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems. Comput Methods Appl Mech Eng 148: 91–126CrossRefMathSciNetGoogle Scholar
  49. 49.
    Michler C, van Brummelen EH, de Borst R (2006) Error-amplification analysis of subiteration-preconditioned GMRES for fluid-structure interaction. Comput Methods Appl Mech Eng 195: 2124–2148MATHCrossRefGoogle Scholar
  50. 50.
    Michler C, van Brummelen EH, Hulshoff SJ, de Borst R (2003) The relevance of conservation for stability and accuracy of numerical methods for fluid-structure interaction. Comput Methods Appl Mech Eng 192: 4195–4215MATHCrossRefGoogle Scholar
  51. 51.
    Nobile F (2001) Numerical Approximation of Fluid-Structure Interaction Problems with Application to Haemodynamics. Ph.D. Thesis, EPFLGoogle Scholar
  52. 52.
    Piperno S, Farhat C (2001) Partitined procedures for the transient solution of coupled aeroelastic problems. Part II: Energy transfer analysis and three-dimensional applications. Comput Methods Appl Mech Eng 190: 3147–3170MATHCrossRefGoogle Scholar
  53. 53.
    Piperno S, Farhat C, Larrouturou B (1995) Partitined procedures for the transient solution of coupled aeroelastic problems. Part I: Model problem, theory and two-dimensional application. Comput Methods Appl Mech Eng 124: 79–112MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Saad Y, Schultz MH (1986) GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7: 856–869MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New YorkMATHGoogle Scholar
  56. 56.
    Babuška I (1973) The finite element method with Lagrange multipliers. Numer Math 20: 179–192MATHCrossRefGoogle Scholar
  57. 57.
    Spivak M (1965) Calculus on manifolds. Benjamin, New YorkMATHGoogle Scholar
  58. 58.
    Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid-structure interactions with large displacements. J Appl Mech 70: 58–63MATHCrossRefGoogle Scholar
  59. 59.
    Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193: 2019–2032MATHCrossRefGoogle Scholar
  60. 60.
    Texas Advanced Computing Center (TACC). http://www.tacc.utexas.edu
  61. 61.
    Taylor CA, Hughes TJR, Zarins CK (1998) Finite element modeling of blood flow in arteries. Comput Methods Appl Mech Eng 158: 155–196MATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    Taylor CA, Hughes TJR, Zarins CK (1998) Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis. Ann Biomed Eng 26: 975–987CrossRefGoogle Scholar
  63. 63.
    Taylor CA, Hughes TJR, Zarins CK (1999) Effect of exercise on hemodynamic conditions in the abdominal aorta. J Vasc Surg 29: 1077–1089CrossRefGoogle Scholar
  64. 64.
    Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces. The deforming-spatial-domain/space-time procedure. I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94: 339–351MATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces. The deforming-spatial-domain/space-time procedure. II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94: 353–371MATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    Tezduyar TE, Sathe S (2007) Modelling of fluid-structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54: 855–900MATHCrossRefMathSciNetGoogle Scholar
  67. 67.
    Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modelling of fluid-structure interactions with the space-time finite elements: Arterial fluid mechanics. Int J Numer Methods Fluids 54: 901–922MATHCrossRefMathSciNetGoogle Scholar
  68. 68.
    Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2008) Arterial fluid mechanics modeling with the stabilized space-time fluid-structure interaction technique. Int J Numer Methods Fluids 57: 601–629MATHCrossRefMathSciNetGoogle Scholar
  69. 69.
    Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575MATHCrossRefMathSciNetGoogle Scholar
  70. 70.
    Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the stabilized finite element methods—space–time formulations, iterative strategies and massively parallel implementations. In: New methods in transient analysis, pVP, vol 246/AMD, vol 143. ASME, New York, pp 7–24Google Scholar
  71. 71.
    Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid-structure interactions. Comput Methods Appl Mech Eng 195: 2002–2027MATHCrossRefMathSciNetGoogle Scholar
  72. 72.
    Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng 195: 3776–3796MATHCrossRefMathSciNetGoogle Scholar
  73. 73.
    Wall W (1999) Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen. Ph.D. Thesis, Institut für Baustatik, Universität StuttgartGoogle Scholar
  74. 74.
    Zhang Y, Bazilevs Y, Goswami S, Bajaj C, Hughes TJR (2007) Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Comput Methods Appl Mech Eng 196: 2943–2959MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Y. Bazilevs
    • 1
  • V. M. Calo
    • 2
  • T. J. R. Hughes
    • 2
  • Y. Zhang
    • 3
  1. 1.Department of Structural EngineeringUniversity of CaliforniaLa JollaUSA
  2. 2.Institute for Computational Engineering and SciencesThe University of Texas at AustinAustinUSA
  3. 3.Mechanical EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations