Computational Mechanics

, 42:907

Rotation manifold SO(3) and its tangential vectors

Original Paper


In this paper, we prove that incremental material rotation vectors belong to different tangent spaces of the rotation manifold SO(3) at a different instant. Moreover, we show that the material tangent space as the tangent space at unity is not a possible definition yielding geometrically inconsistent results, although this kind of definition is widely adopted in applied mechanics community. In addition, we show that the standard Newmark integration scheme for incremental rotations neglects first order terms of rotation vector, not third order terms. Finally, we show that the rotation interpolation of extracted nodal values on the rotation manifold is not an objective interpolation under the observer transformation. This clarifies controversy about the frame-indifference of geometrically exact beam formulations in their finite element implementations.


Finite rotation Rotation manifold Rotation interpolation Objectivity Newmark scheme 


  1. 1.
    Abraham R, Marsden J, Ratiu T (1983) Manifolds, tensor analysis and applications. Addison-Wesley, ReadingMATHGoogle Scholar
  2. 2.
    Argyris J (1982) An excursion into large rotations. Comp Methods Appl Mech Eng 32: 85–155MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Argyris J, Poterasu VF (1993) Large rotation angles revisited application of lie algebra. Comput Methods Appl Mech Eng 103: 11–42MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cardona A, Géradin M (1988) A beam finite element non-linear theory with finite rotations. Int J Num Meth Eng 26: 2403–2438MATHCrossRefGoogle Scholar
  5. 5.
    Choquet-Bruhat Y, DeWitt-Demorette C, Dillard-Bleick M (1989) Analysis, manifolds and physics, Part I: basics. North-Holland, AmsterdamGoogle Scholar
  6. 6.
    Crisfield MA, Jelenic G (1999) Objectivity of strain measures in the geometrically exact 3-Dimensional beam theory and its finite-element implementation. Proc R Soc Lond A 455: 1125–1147MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Géradin M, Cardona A (2001) Flexible multibody dynamics: a finite element approach. Wiley, ChichesterGoogle Scholar
  8. 8.
    Ibrahimbegović A (1997) On the choice of finite rotation parameters. Comput Methods Appl Mech Eng 149: 49–71MATHCrossRefGoogle Scholar
  9. 9.
    Ibrahimbegović A, Al Mikdad M (1998) Finite rotations in dynamics of beams and implicit time-stepping schemes. Int J Num Meth Eng 41: 781–814MATHCrossRefGoogle Scholar
  10. 10.
    Ibrahimbegović A, Frey F, Kozar I (1995) Computational aspects of vector-like parametrization of 3-Dimensional finite rotations. Int J Numer Meth Eng 38: 3653–3673MATHCrossRefGoogle Scholar
  11. 11.
    Jelenić G, Crisfield MA (1999) Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics. Comp Meth Appl Mech Eng 171: 141–171MATHCrossRefGoogle Scholar
  12. 12.
    Marsden JE, Hughes TJR (1994) Mathematical foundation of elasticity. Dover, New YorkGoogle Scholar
  13. 13.
    Marsden JE, Ratiu TS (1999) Introduction to mechanics and symmetry: a basic exposition of classical mechanical systems. Springer, New YorkMATHGoogle Scholar
  14. 14.
    Mäkinen J (2001) Critical study of Newmark-Scheme on manifold of finite rotations. Comput Meth Appl Mech Eng 191: 817–828MATHCrossRefGoogle Scholar
  15. 15.
    Mäkinen J, Marjamäki H (2005) Total lagrangian parametrization of rotation manifold. In: Proceedings of fifth EUROMECH nonlinear dynamics conference. ENOC-2005, Eindhoven, pp 522–530.
  16. 16.
    Mäkinen J (2007) Total lagrangian reissner’s geometrically exact beam element without singularities. Int J Numer Methods Eng 70(9): 1009–1048CrossRefGoogle Scholar
  17. 17.
    Ogden RW (1984) Non-Linear elastic deformations. Ellis Horwood, ChichesterGoogle Scholar
  18. 18.
    Rubin MB (2007) A simplified implicit Newmark integration scheme for finite rotations. Comput Math Appl 53(2): 219–231MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Simo JC, Vu-Quoc L (1988) On the dynamics in space of rods undergoing large motion—a geometrically exact approach. Comp Meth Appl Mech Eng 66: 125–161MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Simo JC, Marsden JE, Krishnaprasad PS (1988) The hamiltonian structure of nonlinear elasticity: the material and convective representation of solids, rods, and plates. Arch Rat Mech Anal 104: 125–183MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Stuelpnagel J (1964) On the parametrization of the 3-Dimensional rotation group. SIAM Rev 6: 422–430MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Stumpf H, Hoppe U (1997) The application of tensor algebra on manifolds to nonlinear continuum mechanics–invited survey article. ZAMM Appl Math Mech 77: 327–339MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Mechanics and DesignTampere University of TechnologyTampereFinland

Personalised recommendations