Computational Mechanics

, 42:885 | Cite as

Mesh free Galerkin method based on natural neighbors and conformal mapping

  • G. R. Balachandran
  • A. Rajagopal
  • S. M. Sivakumar
Original Paper

Abstract

In this work, a robust mesh free method has been presented for the analysis of two dimensional problems. An efficient natural neighbor algorithm for construction of polygonal support domains has been used in this method that takes into account the nonuniform nodal discretization in the element free Galerkin formulation. The use of natural neighbors for determining the compact support is shown to overcome some of the shortcomings of the conventional distance metric based methods. For nonuniform nodal discretization there is a need for evaluating weights that have anisotropic compact supports. The smoothness and conformance of the weight function to the support domain obtained from natural neighbor algorithm is achieved through an efficient conformal mapping procedure such as Schwarz-Christoffel mapping. Numerical examples demonstrate that the proposed mesh free method gives good estimates of the stress/strain fields.

Keywords

Natural neighbors Schwarz-Christoffel mapping Element free Galerkin Moving least squares 

References

  1. 1.
    Adamson A and Alexa M (2006). Anisotropic point pet surfaces. Comput Graph Forum 25(4): 717–724 CrossRefGoogle Scholar
  2. 2.
    Alfaro I, Yvonnet J, Chinesta F and Cueto E (2007). A study on the performance of natural neighbour based galerkin methods. Int J Numer Methods Eng 71: 1436–1465 CrossRefGoogle Scholar
  3. 3.
    Alhfors LV (1979) Complex analysis. McGraw-Hill, New YorkGoogle Scholar
  4. 4.
    Amenta N and Kil Y (2004). Defining point set surfaces. ACM Trans Graph 23(3): 264–270 CrossRefGoogle Scholar
  5. 5.
    Arzanfudia M and Hossein HT (2007). Extended parametric meshless galerkin method. Comput Methods Appl Mech Eng 196: 2229–2241 CrossRefGoogle Scholar
  6. 6.
    Atluri SN and Zhu T (1998). A new meshless local petrov galerkin (mlpg) approach in computational mechanics. Comput Mech 22(1): 117–127 MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Banjai L (2008). Revisiting the crowding phenomenon in Schwarz-Christoffel mapping. SIAM J Sci Comput 30(2): 618–636 CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Beissel S and Belytschko T (1996). Nodal integration of the element free galerkin method. Comput Methods Appl Mech Eng 139(1): 49–74 MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Belytschko T, Lu Y and Gu L (1994). Element free galerkin method. Int J Numer Methods Eng 37(1): 229–256 MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Belytschko T, Krongauz Y, Organ D, Fleming M and Krysl P (1996). Meshless methods: an over view and recent developments. Comput Methods Appl Mech Eng 139(1): 3–47 MATHCrossRefGoogle Scholar
  11. 11.
    Braun J and Sambridge MS (1995). A numerical method for solving partial differential equations on highly irregular evolving grids. Nature 376(1): 655–660 CrossRefGoogle Scholar
  12. 12.
    Cai Y and Zhu H (1995). A local seacrh algorithm for natural neighbours in natural element method. Int J Solids Struct 11: 127–135 Google Scholar
  13. 13.
    Carey GF and Muleshkov AS (1995). Some conformal map constructs for numerical grids. Commun Appl Numer Methods 11: 127–135 MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Cueto E, Sukumar N, Calvo B, Martfnez M, Cegoino J and Doblar M (2003). Overview and recent advances in natural neighbour galerkin methods. Arch Comput Methods Eng 10(4): 307–384 MATHCrossRefGoogle Scholar
  15. 15.
    Driscoll TA (1996). Algorithm 756: a matlab tool box for Schwarz-Christoffel mapping. ACM Trans Math Softw 22(2): 168–186 MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Driscoll TA (2005). Algorithm 843: improvements to the Schwarz-Christoffel mapping toolbox for matlab. ACM Trans Math Softw 31(2): 239–251 MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Driscoll TA, Trefethen LN (2002) Schwarz-Christoffel mapping. Cambridge Monographs on Applied and Computational Mathematics 8(1)Google Scholar
  18. 18.
    Driscoll TA and Vavasis SA (1998). Numerical conformal mapping using cross-ratios and delaunay triangulation. SIAM J Sci Comput 19(1): 1783–1803 MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Du Q, Faber V and Gunzburger M (1999). Centroidal voronoi testellations: applications and algorithms. SIAM Rev 41: 637–676 MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Du Q, Gunzburger M and Ju L (2002). Meshfree, probabilistic determination of point sets and support regions for meshless computing. Comput Methods Appl Mech Eng 191: 1349–1366 MATHCrossRefGoogle Scholar
  21. 21.
    Farin R (1990). Surfaces over drichlet testellations. Comput Aided Geometirc Des 7: 281–292 MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Gonzalez D, Cueto E, Doblare M (2007) Higher order natural element methods: towards an isogeometric meshless method. Int J Numer Methods Eng. Published online. doi:10.1002/nme.2237
  23. 23.
    Howell LH (1990) Computation of conformal maps by modified schwarz-christoffel transformations. Ph.D. Thesis, Department of Mathematics, MIT, CambridgeGoogle Scholar
  24. 24.
    Krysl P and Belytschko T (1996). Analysis of thin plates by element free galerkin method. Comput Mech 17(1): 26–35 CrossRefMathSciNetGoogle Scholar
  25. 25.
    Kucherov L, Tadmor E and Miller R (2007). Umbrella spherical integration: a stable meshless methods for nonlinear solids. Int J Numer Methods Eng 69(1): 2807–2847 CrossRefMathSciNetGoogle Scholar
  26. 26.
    Lancaster P and Salkauskas K (1981). Surfaces generated by moving least square methods. Math Comput 37(1): 141–158 MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Lange C and Polthier K (2005). Anisotropic smoothing of point sets. Comput Aided Geometric Des 22(7): 680–692 MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Liu GR and Tu ZH (2002). An adaptive procedure based on background cells for meshless methods. Comput Methods Appl Mech Eng 191(1): 1923–1943 MATHCrossRefGoogle Scholar
  29. 29.
    Löhner R, Sacco C, Oñate E, Idelsohn S (2002) A finite point method for compressible flow. Int J Numer Methods Eng 53(1):1765–1779Google Scholar
  30. 30.
    Melenk JM and Babuska I (1996). The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139(1): 280–314 CrossRefMathSciNetGoogle Scholar
  31. 31.
    Most T (2007). A natural neighbour based moving least square approach for the element free galerkin method. Int J Numer Methods Eng 71: 224–252 CrossRefMathSciNetGoogle Scholar
  32. 32.
    Nehari Z (1952). Conformal mapping. McGraw-Hill, Dover MATHGoogle Scholar
  33. 33.
    Nie YF, Atluri SN and Zuo CW (2006). The optimal radius of the support of radial weights used in moving least squares approximation. CMES—Comput Model Eng Sci 12(2): 137–147 Google Scholar
  34. 34.
    Pauly M (2003). Shape modelling with point sampled geometry. ACM Trans Graph 22(3): 641–650 CrossRefGoogle Scholar
  35. 35.
    Randles PW and Yagwa G (2000). Normalized smoothed particle hydrodynamics with stress points. Int J Numer Methods Eng 48(1): 1445–1462 MATHCrossRefGoogle Scholar
  36. 36.
    Rao BN and Rahman S (2000). An efficient meshless method for fracture analysis of cracks. Comput Mech 26: 398–408 MATHCrossRefGoogle Scholar
  37. 37.
    Sambridge MS, Braun J and McQueen H (1995). Geophysical prametrization and interpolation of irregular data using natural neighbours. Geophys J Int 122(1): 837–857 CrossRefGoogle Scholar
  38. 38.
    Schembri P, Crane DL and Reddy JN (2004). A three dimensional computational procedure for reproducing meshless methods and the finite element method. Int J Numer Methods Eng 61(6): 896–927 MATHCrossRefGoogle Scholar
  39. 39.
    Shirazaki M and Yagwa G (1999). Large-scale parallel flow analysis based on free mesh method: a virtually mesh less method. Comput Methods Appl Mech Eng 174(1): 419–431 MATHCrossRefGoogle Scholar
  40. 40.
    Sibson R (1980). A vector identity for the drichlet tessellation. Math Proc Camb Philos Soc 87: 151–155 MATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Sibson R (1981) A brief description of natutral neighbour interpolation. In: Barnett V (ed) Interpreting multivariate data, vol 87, pp 21–36Google Scholar
  42. 42.
    Sukumar N (1998) Natural element method in solid mechanics. Ph.D. ThesisGoogle Scholar
  43. 43.
    Sukumar N and Moran B (1999). c 1 natural neighbour interpolant for partial differential equations. Numer Methods Partial Differ Equ 15(4): 417–447 MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Sukumar N and Wright RW (2007). Overview and construction of meshfree basis functions: from moving least squares to entropy approximants. Int J Numer Methods Eng 70(2): 181–205 CrossRefMathSciNetGoogle Scholar
  45. 45.
    Sukumar N, Moran B and Belytschko T (1998). The natural element method in solid mechanics. Int J Numer Methods Eng 43(1): 839–887 MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Sukumar N, Moran B, Belikov V and Semenov Y (2001). Natural neighbour galerkin methods. Int J Numer Methods Eng 50(1): 1–27 MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Tiwary A (2007). Numerical conformal mapping method based vorornoi cell finite element model for analyzing irregular inhomogenities. Finite Elements Anal Des 43(2): 504–520 CrossRefMathSciNetGoogle Scholar
  48. 48.
    Trefethen LN (1980). Numerical conformal mapping. SIAM J Sci Stat Comput 1(1): 82–102 MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Zuohui P (2000). Treatment of point loads in element free galerkin method. Commun Numer Methods Eng 16(2): 335–341 MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • G. R. Balachandran
    • 1
  • A. Rajagopal
    • 2
  • S. M. Sivakumar
    • 3
  1. 1.Department of Mechanical EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Chair of Applied MechanicsUniversity of Erlangen NurembergErlangenGermany
  3. 3.Department of Applied MechanicsIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations