Advertisement

Computational Mechanics

, Volume 43, Issue 1, pp 115–124 | Cite as

An Eulerian approach for partitioned fluid–structure simulations on Cartesian grids

  • Miriam MehlEmail author
  • Markus Brenk
  • Hans-Joachim Bungartz
  • Klaus Daubner
  • Ioan Lucian Muntean
  • Tobias Neckel
Original Paper

Abstract

This paper describes an Eulerian approach for partitioned fluid–structure simulations based on a fluid solver using regularly and adaptively refined Cartesian grids. The particular focus is on the efficient implementation and embedding of the fluid solver in the context of coupled simulations. Special subjects are the efficient layout of data structures and data access based on space-filling curves and the realisation of geometry and topology changes. In addition, a coupling environment is presented that allows for an easy and flexible coupling of flow and structure codes. Simulation results are provided for large particle movements within the drift ratchet scenario.

Keywords

Eulerian approach Fluid–structure interaction Partitioned approach Cartesian grids Coupling environment Drift ratchet 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    MpCCI 3.0 (2007) Multidisciplinary simulations through code coupling. Fraunhofer SCAI, Sankt Augustin. http://www.mpcci.de/mpcci_manuals.html, manual
  2. 2.
    Bader M, Bungartz HJ, Frank A, Mundani RP (2002) Space tree structures for PDE software. In: Sloot PMA, Tan CJK, Dongarra JJ, Hoekstra AG(eds) Proceedings of the international conference on computer science. LNCS, vol 2331. Springer, Heidelberg, pp 662–671Google Scholar
  3. 3.
    Bijl H, van Zuijlen AH, Bosscher S (2006) Two level algorithms for partitioned fluid–structure interaction computations. In: Wesseling P, Oñate E, Périaux J (eds) ECCOMAS CFD 2006, european conference on computational fluid dynamics, TU delftGoogle Scholar
  4. 4.
    Blanke C (2004) Kontinuitätserhaltende Finite-Element-Diskretisierung der Navier–Stokes-Gleichungen. Diploma thesis, Fakultät für Mathematik, TU MünchenGoogle Scholar
  5. 5.
    Brenk M, Bungartz HJ, Mehl M, Mundani RP, Düster A, Scholz D (2005) Efficient interface treatment for fluid–structure interaction on cartesian grids. In: ECCOMAS COUPLED PROBLEMS 2005, Proceedings of the thematic conference on computational methods for coupled problems in science and engineering. International Center for Numerical Methods in Engineering (CIMNE)Google Scholar
  6. 6.
    Brenk M, Bungartz HJ, Mehl M, Neckel T (2006) Fluid-structure interaction on cartesian grids: flow simulation and coupling environment. In: Bungartz HJ, Schäfer M(eds) Fluid–structure interaction. LNCSE, vol 53. Springer, Heidelberg, pp 233–269Google Scholar
  7. 7.
    Brenk M, Bungartz HJ, Mehl M, Muntean IL, Neckel T, Weinzierl T (2007) Numerical simulation of particle transport in a drift ratchet. SIAM J Sci Comput (in review)Google Scholar
  8. 8.
    Chorin AJ (1968) Numerical solution of the Navier–Stokes equations. Math Comput 22: 745–762zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Düster A, Bröker H, Heidkamp H, Heißerer U, Kollmannsberger S, Krause R, AMuthler, Niggl A, Nübel V, Rücker M, Scholz D (2004) AdhoC4—User’s guide. Lehrstuhl für Bauinformatik, TU MünchenGoogle Scholar
  10. 10.
    Emans M, Zenger C (2005) An efficient method for the prediction of the motion of individual bubbles. Int J Comput Fluid Dyn 19: 347–356zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Felippa CA, Park KC, Farhat C (2001) Partitioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 190: 3247–3270zbMATHCrossRefGoogle Scholar
  12. 12.
    Geller S, Tölke J, Krafczyk M (2006) Lattice-Boltzmann method on quadtree type grids for fluid–structure interaction. In: Bungartz HJ, Schäfer M(eds) Fluid-structure interaction. LNCSE, vol 53. Springer, Heidelberg, pp 270–293CrossRefGoogle Scholar
  13. 13.
    Gresho PM, Sani RL (1998) Incompressible flow and the finite element method. Wiley,Google Scholar
  14. 14.
    Griebel M, Zumbusch GW (1998) Hash-storage techniques for adaptive multilevel solvers and their domain decomposition parallelization. In: Mandel J, Farhat C, Cai XC (eds) Proceedings of domain decomposition methods 10, DD10, vol 218. AMS, Providence, pp 279–286. http://citeseer.ist.psu.edu/46737.html
  15. 15.
    Günther F, Mehl M, Pögl M, Zenger C (2006) A cache-aware algorithm for PDEs on hierarchical data structures based on space-filling curves. SIAM J Sci Comput 28(5): 1634–1650zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Harlow FH, Welch JE (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. Phys Fluids 8(12): 2182–2189CrossRefGoogle Scholar
  17. 17.
    Kettner C, Reimann P, Hänggi P, Müller F (2000) Drift ratchet. Phys Rev E 61: 312–323CrossRefGoogle Scholar
  18. 18.
    Krahnke A (2005) Adaptive Verfahren höherer Ordnung auf cache-optimalen Datenstrukturen für dreidimensionale Probleme, Dissertation. TU MünchenGoogle Scholar
  19. 19.
    Masud A, Hughes TJR (1997) A space–time galerkin/least-squares finite element formulation of the navier–stokes equations for moving domain problems. Comput Methods Appl Mech Eng 146: 91–126zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Matthias S, Müller F (2003) Asymmetric pores in a silicon membrane acting as massively parallel brownian ratchets. lett Nat 424: 53–57CrossRefGoogle Scholar
  21. 21.
    Mehl M (2006) Cache-optimal data-structures for hierarchical methods on adaptively refined space-partitioning grids. In: International conference on high performance computing and communications 2006, HPCC06. LNCS, vol 4208. Springer, Heidelberg, pp 138–147Google Scholar
  22. 22.
    Mehl M, Weinzierl T, Zenger C (2006) A cache-oblivious self-adaptive full multigrid method. Numer Linear Algebra 13(2–3): 275–291CrossRefMathSciNetGoogle Scholar
  23. 23.
    Michler C (2005) Efficient numerical methods for fluid–structure interaction, Ph D thesis. PrintPartners IpskampGoogle Scholar
  24. 24.
    Mittal R, Iaccarino G (2005) Immersed boundary methods. Annu Rev Fluid Mech 37: 239–261CrossRefMathSciNetGoogle Scholar
  25. 25.
    Pögl M (2004) Entwicklung eines cache-optimalen 3D Finite-Element-Verfahrens für große Probleme, Fortschritt-Berichte VDI, Informatik Kommunikation 10, vol 745. VDI Verlag, DüsseldorfGoogle Scholar
  26. 26.
    Sagan H (1994) Space-filling curves. Springer, New YorkzbMATHGoogle Scholar
  27. 27.
    Scholz D, Kollmannsberger S, Düster A, Rank E (2006) Thin solids for fluid–structure interaction. In: Bungartz HJ, Schäfer M(eds) Fluid–structure interaction. LNCSE, vol 53. Springer, Heidelberg, pp 294–335Google Scholar
  28. 28.
    Tomé MF, McKee S (1994) GENSMAC: a computational marker and cell method for free surface flows in general domains. J Comput Phys 110: 171–186zbMATHCrossRefGoogle Scholar
  29. 29.
    Turek S, Schäfer M (1996) Benchmark computations of laminar flow around a cylinder. In: Hirschel EH (ed) Flow simulation with high-performance computers II, vol 52. NNFM, ViewegGoogle Scholar
  30. 30.
    Verstappen RWCP, Veldman AEP (2003) Symmetry-preserving discretization of turbulent channel flow. J Comput Phys 187: 343–368zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Vierendeels J (2006) Implicit coupling of partitioned fluid–structure interaction solvers using reduced-order models. In: Bungartz HJ, Schäfer M(eds) Fluid–Structure interaction, modelling, simulation, optimisation. Springer, Heidelberg, pp 1–18Google Scholar
  32. 32.
    Wagner T (2005) Randbehandlung höherer Ordnung für ein cache-optimales Finite-Element-Verfahren auf kartesischen Gittern. Diploma thesis, Institut für Informatik, TU MünchenGoogle Scholar
  33. 33.
    Wang W (2001) Special bilinear quadrilateral elements for locally refined finite element grids. SIAM J Sci Comput 22(6): 2029–2050zbMATHCrossRefGoogle Scholar
  34. 34.
    Yigit S, Heck M, Sternel DC, Schäfer M (2007) Efficiency of fluid–structure interaction simulations with adaptive underrelaxation and multigrid acceleration. Int J Multiphys 1: 85–99CrossRefGoogle Scholar
  35. 35.
    Zumbusch G (2001) Adaptive parallel multilevel methods for partial differential equations. Habilitationsschrift, Universität Bonn, BonnGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Miriam Mehl
    • 1
    Email author
  • Markus Brenk
    • 1
  • Hans-Joachim Bungartz
    • 1
  • Klaus Daubner
    • 1
  • Ioan Lucian Muntean
    • 1
  • Tobias Neckel
    • 1
  1. 1.Department of Computer ScienceTU MünchenGarchingGermany

Personalised recommendations