Computational Mechanics

, Volume 43, Issue 1, pp 73–80 | Cite as

A nested iterative scheme for computation of incompressible flows in long domains

  • Murat Manguoglu
  • Ahmed H. Sameh
  • Tayfun E. Tezduyar
  • Sunil Sathe
Original Paper

Abstract

We present an effective preconditioning technique for solving the nonsymmetric linear systems encountered in computation of incompressible flows in long domains. The application category we focus on is arterial fluid mechanics. These linear systems are solved using a nested iterative scheme with an outer Richardson scheme and an inner iteration that is handled via a Krylov subspace method. Test computations that demonstrate the robustness of our nested scheme are presented.

Keywords

Incompressible flows Arterial fluid mechanics Long domains Nested iterative schemes Preconditioners 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2004) Influence of wall elasticity on image-based blood flow simulation. Jpn Soc Mech Eng J Series A 70: 1224–1231 (in Japanese)Google Scholar
  2. 2.
    Gerbeau J-F, Vidrascu M, Frey P (2005) Fluid–structure interaction in blood flow on geometries based on medical images. Comput Struct 83: 155–165CrossRefGoogle Scholar
  3. 3.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized space–time formulation. Comput Methods Appl Mech Eng 195: 1885–1895MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38: 482–490CrossRefMATHGoogle Scholar
  5. 5.
    Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Influence of wall elasticity in patient-specific hemodynamic simulations. Comput Fluids 36: 160–168MATHCrossRefGoogle Scholar
  7. 7.
    Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space–time finite elements: arterial fluid mechanics. Int J Numer Methods Fluids 54: 901–922MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—dependence of the effect on the aneurysm shape. Int J Numer Methods Fluids 54: 995–1009MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2007) Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique. Int J Numer Methods Fluids, published online. doi:10.1002/fld.1633
  10. 10.
    Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) A fully-integrated approach to fluid–structure interaction. Comput Mech (in preparation)Google Scholar
  11. 11.
    Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54: 855–900MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28: 1–44MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94: 339–351MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94: 353–371MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Cuthill E, McKee J (1969) Reducing the bandwidth of sparse symmetric matrices. In: Proceedings of the 1969 24th national conference. ACM Press, New York, pp 157–172Google Scholar
  17. 17.
    Polizzi E, Sameh AH (2006) A parallel hybrid banded system solver: the SPIKE algorithm. Parallel Comput 32: 177–194CrossRefMathSciNetGoogle Scholar
  18. 18.
    Dongarra JJ, Sameh AH (1984) On some parallel banded system solvers. Parallel Comput 1: 223–235CrossRefGoogle Scholar
  19. 19.
    Berry MW, Sameh A (1988) Multiprocessor schemes for solving block tridiagonal linear systems. Int J Supercomput Appl 1: 37–57Google Scholar
  20. 20.
    Kuck DJ, Chen SC, Sameh AH (1978) Practical parallel band triangular system solvers. ACM Trans Math Softw 4: 270–277MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    van der Vorst HA (1992) BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput 13: 631–644MATHCrossRefGoogle Scholar
  22. 22.
    Saad Y (1990) SPARSKIT: A basic tool kit for sparse matrix computations. Technical Report 90-20, NASA Ames Research Center, Moffett Field, CAGoogle Scholar
  23. 23.
    Schenk O, Gärtner K, Fichtner W, Stricker A (2001) PARDISO: a high-performance serial and parallel sparse linear solver in semiconductor device simulation. Futur Gener Comput Syst 18: 69–78MATHCrossRefGoogle Scholar
  24. 24.
    Baggag A, Sameh A (2004) A nested iterative scheme for indefinite linear systems in particulate flows. Comp Meth Appl Mech Eng 193: 1923–1957MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    van der Vorst HA, Vuik C (1991) GMRESR: A family of nested GMRES methods. Technical Report DUT-TWI-91-80, Delft, The NetherlandsGoogle Scholar
  26. 26.
    Simoncini V, Szyld DB (2002) Flexible inner-outer Krylov subspace methods. SIAM J Numer Anal 40: 2219–2239CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Murat Manguoglu
    • 1
  • Ahmed H. Sameh
    • 1
  • Tayfun E. Tezduyar
    • 2
  • Sunil Sathe
    • 2
  1. 1.Department of Computer SciencePurdue UniversityWest LafayetteUSA
  2. 2.Mechanical EngineeringRice UniversityHoustonUSA

Personalised recommendations