Advertisement

Computational Mechanics

, Volume 43, Issue 1, pp 39–49 | Cite as

Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods

  • Tayfun E. Tezduyar
  • Sunil Sathe
  • Jason Pausewang
  • Matthew Schwaab
  • Jason Christopher
  • Jason Crabtree
Original Paper

Abstract

The stabilized space–time fluid–structure interaction (SSTFSI) technique developed by the Team for Advanced Flow Simulation and Modeling (T★AFSM) was applied to a number of 3D examples, including arterial fluid mechanics and parachute aerodynamics. Here we focus on the interface projection techniques that were developed as supplementary methods targeting the computational challenges associated with the geometric complexities of the fluid–structure interface. Although these supplementary techniques were developed in conjunction with the SSTFSI method and in the context of air–fabric interactions, they can also be used in conjunction with other moving-mesh methods, such as the Arbitrary Lagrangian–Eulerian (ALE) method, and in the context of other classes of FSI applications. The supplementary techniques currently consist of using split nodal values for pressure at the edges of the fabric and incompatible meshes at the air–fabric interfaces, the FSI Geometric Smoothing Technique (FSI-GST), and the Homogenized Modeling of Geometric Porosity (HMGP). Using split nodal values for pressure at the edges and incompatible meshes at the interfaces stabilizes the structural response at the edges of the membrane used in modeling the fabric. With the FSI-GST, the fluid mechanics mesh is sheltered from the consequences of the geometric complexity of the structure. With the HMGP, we bypass the intractable complexities of the geometric porosity by approximating it with an “equivalent”, locally-varying fabric porosity. As test cases demonstrating how the interface projection techniques work, we compute the air–fabric interactions of windsocks, sails and ringsail parachutes.

Keywords

Interface projection techniques Air–fabric interaction Fluid–structure interaction Space–time FSI technique Sails Parachutes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tezduyar T, Aliabadi S, Behr M, Johnson A and Mittal S (1993). Parallel finite-element computation of 3D flows. Computer 26: 27–36 CrossRefGoogle Scholar
  2. 2.
    Tezduyar TE, Aliabadi SK, Behr M and Mittal S (1994). Massively parallel finite element simulation of compressible and incompressible flows. Comput Methods Appl Mech Eng 119: 157–177 zbMATHCrossRefGoogle Scholar
  3. 3.
    Mittal S and Tezduyar TE (1994). Massively parallel finite element computation of incompressible flows involving fluid-body interactions. Comput Methods Appl Mech Eng 112: 253–282 zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Mittal S and Tezduyar TE (1995). Parallel finite element simulation of 3D incompressible flows – Fluid-structure interactions. Int J Numer Methods Fluids 21: 933–953 zbMATHCrossRefGoogle Scholar
  5. 5.
    Johnson AA and Tezduyar TE (1999). Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23: 130–143 zbMATHCrossRefGoogle Scholar
  6. 6.
    Kalro V and Tezduyar TE (2000). A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Eng 190: 321–332 zbMATHCrossRefGoogle Scholar
  7. 7.
    Stein K, Benney R, Kalro v, Tezduyar TE, Leonard J and Accorsi M (2000). Parachute fluid–structure interactions: 3-D computation. Comput Methods Appl Mech Eng 190: 373–386 zbMATHCrossRefGoogle Scholar
  8. 8.
    Tezduyar T and Osawa Y (2001). Fluid–structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191: 717–726 zbMATHCrossRefGoogle Scholar
  9. 9.
    Ohayon R (2001). Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems. Comput Methods Appl Mech Eng 190: 3009–3019 zbMATHCrossRefGoogle Scholar
  10. 10.
    Tezduyar TE, Sathe S, Keedy R, Stein K (2004) Space–time techniques for finite element computation of flows with moving boundaries and interfaces. In: Gallegos S, Herrera I, Botello S, Zarate F, Ayala G (eds) Proceedings of the III International Congress on Numerical Methods in Engineering and Applied Science, CD-ROM, Monterrey, MexicoGoogle Scholar
  11. 11.
    Torii R, Oshima M, Kobayashi T, Takagi K and Tezduyar TE (2004). Influence of wall elasticity on image-based blood flow simulation. Jpn Soc Mech Eng J Ser A 70: 1224–1231 Google Scholar
  12. 12.
    van Brummelen EH and de Borst R (2005). On the nonnormality of subiteration for a fluid–structure interaction problem. SIAM J Sci Comput 27: 599–621 zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Michler C, van Brummelen EH and de Borst R (2005). An interface Newton–Krylov solver for fluid–structure interaction. Int J Numer Methods Fluids 47: 1189–1195 zbMATHCrossRefGoogle Scholar
  14. 14.
    Gerbeau J-F, Vidrascu M and Frey P (2005). Fluid–structure interaction in blood flow on geometries based on medical images. Comput Struct 83: 155–165 CrossRefGoogle Scholar
  15. 15.
    Tezduyar TE, Sathe S, Keedy R and Stein K (2006). Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195: 2002–2027 zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Tezduyar TE, Sathe S and Stein K (2006). Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Methods Appl Mech Eng 195: 5743–5753 zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Torii R, Oshima M, Kobayashi T, Takagi K and Tezduyar TE (2006). Computer modeling of cardiovascular fluid–structure interactions with the Deforming-Spatial-Domain/Stabilized Space–Time formulation. Comput Methods Appl Mech Eng 195: 1885–1895 zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Tezduyar TE, Sathe S, Stein K, Aureli L (2005) Modeling of fluid–structure interactions with the space–time techniques. In: Bungartz H-J, Schafer M (eds) Fluid–structure interaction, vol 53 of Lecture Notes in Computational Science and Engineering, Springer, Heidelberg, pp 50–81Google Scholar
  19. 19.
    Torii R, Oshima M, Kobayashi T, Takagi K and Tezduyar TE (2006). Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput. Mech. 38: 482–490 CrossRefzbMATHGoogle Scholar
  20. 20.
    Dettmer W and Peric D (2006). A computational framework for fluid-structure interaction: Finite element formulation and applications. Comput. Methods Appl. Mech. Eng. 195: 5754–5779 zbMATHCrossRefGoogle Scholar
  21. 21.
    Bazilevs Y, Calo VM, Zhang Y and Hughes TJR (2006). Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput. Mech. 38: 310–322 CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Khurram RA and Masud A (2006). A multiscale/stabilized formulation of the incompressible Navier–Stokes equations for moving boundary flows and fluid–structure interaction. Comput. Mech. 38: 403–416 CrossRefzbMATHGoogle Scholar
  23. 23.
    Kuttler U, Forster C and Wall WA (2006). A solution for the incompressibility dilemma in partitioned fluid–structure interaction with pure Dirichlet fluid domains. Comput. Mech. 38: 417–429 CrossRefGoogle Scholar
  24. 24.
    Lohner R, Cebral JR, Yang C, Baum JD, Mestreau EL, Soto O (2006) Extending the range of applicability of the loose coupling approach for FSI simulations. In: Bungartz H-J, Schafer M (eds) Fluid–structure interaction, vol 53 of Lecture Notes in Computational Science and Engineering, Springer, Heidelberg, pp 82–100Google Scholar
  25. 25.
    Bletzinger K-U, Wuchner R, Kupzok A (2006) Algorithmic treatment of shells and free form-membranes in FSI. In: Bungartz H-J, Schafer M (eds) Fluid–structure interaction, vol 53 of Lecture Notes in Computational Science and Engineering. Springer, Heidelberg, pp 336–355Google Scholar
  26. 26.
    Torii R, Oshima M, Kobayashi T, Takagi K and Tezduyar TE (2007). Influence of wall elasticity in patient-specific hemodynamic simulations. Comput. Fluids 36: 160–168 zbMATHCrossRefGoogle Scholar
  27. 27.
    Masud A, Bhanabhagvanwala M and Khurram RA (2007). An adaptive mesh rezoning scheme for moving boundary flows and fluid–structure interaction. Comput. Fluids 36: 77–91 zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Sawada T and Hisada T (2007). Fuid–structure interaction analysis of the two dimensional flag-in-wind problem by an interface tracking ALE finite element method. Comput. Fluids 36: 136–146 zbMATHCrossRefGoogle Scholar
  29. 29.
    Wall WA, Genkinger S and Ramm E (2007). A strong coupling partitioned approach for fluid–structure interaction with free surfaces. Comput. Fluids 36: 169–183 zbMATHCrossRefGoogle Scholar
  30. 30.
    Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) A fully-integrated approach to fluid–structure interaction. Comput Mech (in preparation)Google Scholar
  31. 31.
    Hughes TJR, Liu WK and Zimmermann TK (1981). Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29: 329–349 zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Hughes TJR, Brooks AN (1979) A multi-dimensional upwind scheme with no crosswind diffusion. In: Hughes TJR (eds) Finite element methods for convection dominated flows, AMD-Vol. 34. ASME, New York, pp 19–35Google Scholar
  33. 33.
    Brooks AN and Hughes TJR (1982). Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32: 199–259 zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Tezduyar TE (1992). Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28: 1–44 zbMATHMathSciNetGoogle Scholar
  35. 35.
    Tezduyar TE, Mittal S, Ray SE and Shih R (1992). Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95: 221–242 zbMATHCrossRefGoogle Scholar
  36. 36.
    Hughes TJR, Franca LP and Balestra M (1986). A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška–Brezzi condition: a stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations.. Comput Methods Appl Mech Eng 59: 85–99 zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Tezduyar TE, Behr M and Liou J (1992). A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space—time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94: 339–351 zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Tezduyar TE, Behr M, Mittal S and Liou J (1992). A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94: 353–371 zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Tezduyar TE (2003). Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575 zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Tezduyar TE and Sathe S (2007). Modeling of fluid–structure interactions with the space–time finite elements: Solution techniques. Int J Numer Methods Fluids 54: 855–900 zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods – space–time formulations, iterative strategies and massively parallel implementations. In: New methods in transient analysis, PVP-vol 246/AMD-vol 143, ASME, New York, pp 7–24Google Scholar
  42. 42.
    Johnson AA and Tezduyar TE (1994). Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119: 73–94 zbMATHCrossRefGoogle Scholar
  43. 43.
    Johnson AA and Tezduyar TE (1997). Parallel computation of incompressible flows with complex geometries. Int J Numer Methods Fluids 24: 1321–1340 zbMATHCrossRefGoogle Scholar
  44. 44.
    Tezduyar T (2001) Finite element interface-tracking and interface-capturing techniques for flows with moving boundaries and interfaces. In: Proceedings of the ASME symposium on fluid-physics and heat transfer for macro- and micro-scale gas–liquid and phase-change flows (CD-ROM), ASME Paper IMECE2001/HTD-24206, ASME, New YorkGoogle Scholar
  45. 45.
    Tezduyar TE (2003). Stabilized finite element formulations and interface-tracking and interface-capturing techniques for incompressible flows. In: Hafez, MM (eds) Numerical simulations of incompressible flows, pp 221–239. World Scientific, New Jersey Google Scholar
  46. 46.
    Stein K, Tezduyar T and Benney R (2003). Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70: 58–63 zbMATHCrossRefGoogle Scholar
  47. 47.
    Tezduyar TE, Sathe S, Senga M, Aureli L, Stein K, Griffin B (2005) Finite element modeling of fluid–structure interactions with space–time and advanced mesh update techniques. In: Proceedings of the 10th international conference on numerical methods in continuum mechanics (CD-ROM). Zilina, SlovakiaGoogle Scholar
  48. 48.
    Mittal S and Tezduyar TE (1992). A finite element study of incompressible flows past oscillating cylinders and aerofoils. Int J Numer Methods Fluids 15: 1073–1118 CrossRefGoogle Scholar
  49. 49.
    Stein KR, Benney RJ, Kalro V, Johnson AA, Tezduyar TE (1997) Parallel computation of parachute fluid–structure interactions. In: Proceedings of AIAA 14th aerodynamic eecelerator systems technology conference, AIAA Paper 97-1505, San Francisco, CaliforniaGoogle Scholar
  50. 50.
    Stein K, Benney R, Tezduyar T, Kalro V, Leonard J, Accorsi M (1999) 3-D computation of parachute fluid–structure interactions: performance and control. In: Proceedings of CEAS/AIAA 15th aerodynamic decelerator systems technology conference, AIAA Paper 99-1714, Toulouse, FranceGoogle Scholar
  51. 51.
    Stein K, Benney R, Tezduyar T, Kalro V, Potvin J, Bretl T (1999) Fluid–structure interaction simulation of a cross parachute: comparison of numerical predictions with wind tunnel data. In: Proceedings of CEAS/AIAA 15th aerodynamic decelerator systems technology conference. AIAA Paper 99-1725, Toulouse, FranceGoogle Scholar
  52. 52.
    Stein K, Benney R, Tezduyar T and Potvin J (2001). Fluid–structure interactions of a cross parachute: Numerical simulation. Comput Methods Appl Mech Eng 191: 673–687 zbMATHCrossRefGoogle Scholar
  53. 53.
    Stein KR, Benney RJ, Tezduyar TE, Leonard JW and Accorsi ML (2001). Fluid–structure interactions of a round parachute: Modeling and simulation techniques. J Aircraft 38: 800–808 CrossRefGoogle Scholar
  54. 54.
    Tezduyar TE (2003). Stabilized finite element methods for flows with moving boundaries and interfaces. HERMIS Int J Comput Math Appl 4: 63–88 zbMATHMathSciNetGoogle Scholar
  55. 55.
    Tezduyar TE (2004) Finite element methods for fluid dynamics with moving boundaries and interfaces. In: Stein E, De Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, vol 3: Fluids, chap 17, Wiley, New YorkGoogle Scholar
  56. 56.
    Tezduyar TE (2004) Moving boundaries and interfaces. In: Franca LP, Tezduyar TE, Masud A (eds) Finite element methods: 1970’s and beyond, 205–220, CIMNE, Barcelona, SpainGoogle Scholar
  57. 57.
    Tezduyar TE (2007). Finite elements in fluids: special methods and enhanced solution techniques. Comput Fluids 36: 207–223 CrossRefMathSciNetGoogle Scholar
  58. 58.
    Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J and Schwaab M (2007). Modeling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics. Int J Numer Methods Fluids 54: 901–922 zbMATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    Tezduyar TE, Pausewang J, Sathe S, FSI modeling of sails. In: Onate E, Garcia J, Bergan P, Kvamsdal T (eds) Marine 2007, CIMNE, Barcelona, SpainGoogle Scholar
  60. 60.
    Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2007) Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique. Int J Numer Methods Fluids, published online, doi: 10.1002/fld.1633
  61. 61.
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Crabtree J, Christopher J (2007) Air–fabric interaction modeling with the stabilized space–time FSI technique. In: Proceedings of the 3rd Asian-pacific congress on computational mechanics (CD-ROM). Kyoto, JapanGoogle Scholar
  62. 62.
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Crabtree J, Christopher J (2007) Fluid-structure interaction modeling with moving-mesh techniques. In: Proceedings of the symposium on recent progress in computational fluid dynamics, Japan Society of Automotive Engineers. Tokyo, JapanGoogle Scholar
  63. 63.
    Saad Y and Schultz M (1986). GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7: 856–869 zbMATHCrossRefMathSciNetGoogle Scholar
  64. 64.
  65. 65.
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Fluid–structure interaction modeling of ringsail parachutes. Comput Mech (to appear)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Tayfun E. Tezduyar
    • 1
  • Sunil Sathe
    • 1
  • Jason Pausewang
    • 1
  • Matthew Schwaab
    • 1
  • Jason Christopher
    • 1
  • Jason Crabtree
    • 2
  1. 1.Mechanical EngineeringRice UniversityHoustonUSA
  2. 2.Civil and Mechanical EngineeringUS Military AcademyWest PointUSA

Personalised recommendations