Advertisement

Computational Mechanics

, Volume 43, Issue 1, pp 133–142 | Cite as

Fluid–structure interaction modeling of ringsail parachutes

  • Tayfun E. Tezduyar
  • Sunil Sathe
  • Matthew Schwaab
  • Jason Pausewang
  • Jason Christopher
  • Jason Crabtree
Original Paper

Abstract

In this paper, we focus on fluid–structure interaction (FSI) modeling of ringsail parachutes, where the geometric complexity created by the “rings” and “sails” used in the construction of the parachute canopy poses a significant computational challenge. It is expected that NASA will be using a cluster of three ringsail parachutes, referred to as the “mains”, during the terminal descent of the Orion space vehicle. Our FSI modeling of ringsail parachutes is based on the stabilized space–time FSI (SSTFSI) technique and the interface projection techniques that address the computational challenges posed by the geometric complexities of the fluid–structure interface. Two of these interface projection techniques are the FSI Geometric Smoothing Technique and the Homogenized Modeling of Geometric Porosity. We describe the details of how we use these two supplementary techniques in FSI modeling of ringsail parachutes. In the simulations we report here, we consider a single main parachute, carrying one third of the total weight of the space vehicle. We present results from FSI modeling of offloading, which includes as a special case dropping the heat shield, and drifting under the influence of side winds.

Keywords

Ringsail parachute Orion space vehicle Fluid–structure interaction Offloading Drifting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tezduyar T, Aliabadi S, Behr M, Johnson A and Mittal S (1993). Parallel finite-element computation of 3D flows. Computer 26: 27–36 CrossRefGoogle Scholar
  2. 2.
    Tezduyar TE, Aliabadi SK, Behr M and Mittal S (1994). Massively parallel finite element simulation of compressible and incompressible flows. Comput Meth Appl Mech Eng 119: 157–177 zbMATHCrossRefGoogle Scholar
  3. 3.
    Mittal S and Tezduyar TE (1994). Massively parallel finite element computation of incompressible flows involving fluid–body interactions. Comp Meth Appl Mech Eng 112: 253–282 zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Mittal S and Tezduyar TE (1995). Parallel finite element simulation of 3D incompressible flows—Fluid–structure interactions. Int J Numer Meth Fluids 21: 933–953 zbMATHCrossRefGoogle Scholar
  5. 5.
    Johnson AA and Tezduyar TE (1999). Advanced mesh generation and update methods for 3D flow simulations. Computat Mech 23: 130–143 zbMATHCrossRefGoogle Scholar
  6. 6.
    Kalro V and Tezduyar TE (2000). A parallel 3D computational method for fluid–structure interactions in parachute systems. Comp Meth Appl Mech Eng 190: 321–332 zbMATHCrossRefGoogle Scholar
  7. 7.
    Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J and Accorsi M (2000). Parachute fluid–structure interactions: 3-D computation. Comp Meth Appl Mech Eng 190: 373–386 zbMATHCrossRefGoogle Scholar
  8. 8.
    Tezduyar T and Osawa Y (2001). Fluid–structure interactions of a parachute crossing the far wake of an aircraft. Comp Meth Appl Mech Eng 191: 717–726 zbMATHCrossRefGoogle Scholar
  9. 9.
    Ohayon R (2001). Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems. Comp Meth Appl Mech Eng 190: 3009–3019 zbMATHCrossRefGoogle Scholar
  10. 10.
    Tezduyar TE, Sathe S, Keedy R, Stein K (2004) Space–time techniques for finite element computation of flows with moving boundaries and interfaces. In: Gallegos S, Herrera I, Botello S, Zarate F, Ayala G (eds) Proceedings of the III international congress on numerical methods in engineering and applied science, CD-ROM, Monterrey, MexicoGoogle Scholar
  11. 11.
    Torii R, Oshima M, Kobayashi T, Takagi K and Tezduyar TE (2004). Influence of wall elasticity on image-based blood flow simulation. Jpn Soc Mech Eng J Ser A 70: 1224–1231 (in Japanese)Google Scholar
  12. 12.
    van Brummelen EH and de Borst R (2005). On the nonnormality of subiteration for a fluid–structure interaction problem. SIAM J Sci Comput 27: 599–621 zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Michler C, van Brummelen EH and de Borst R (2005). An interface Newton–Krylov solver for fluid–structure interaction. Int J Numer Meth Fluids 47: 1189–1195 zbMATHCrossRefGoogle Scholar
  14. 14.
    Gerbeau J-F, Vidrascu M and Frey P (2005). Fluid–structure interaction in blood flow on geometries based on medical images. Comp Struc 83: 155–165 CrossRefGoogle Scholar
  15. 15.
    Tezduyar TE, Sathe S, Keedy R and Stein K (2006). Space–time finite element techniques for computation of fluid–structure interactions. Comp Meth Appl Mech Eng 195: 2002–2027 zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Tezduyar TE, Sathe S and Stein K (2006). Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comp Meth Appl Mech Eng 195: 5743–5753 zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Torii R, Oshima M, Kobayashi T, Takagi K and Tezduyar TE (2006). Computer modeling of cardiovascular fluid–structure interactions with the Deforming-Spatial-Domain/Stabilized Space–Time formulation. Comp Meth Appl Mech Eng 195: 1885–1895 zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Tezduyar TE, Sathe S, Stein K and Aureli L (2006). Modeling of fluid–structure interactions with the space–time techniques. In: Bungartz, H-J and Schafer, M (eds) Fluid–structure interaction, vol 53. Lecture notes in computational science and engineering., pp 50–81. Springer, Heidelberg Google Scholar
  19. 19.
    Torii R, Oshima M, Kobayashi T, Takagi K and Tezduyar TE (2006). Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38: 482–490 CrossRefzbMATHGoogle Scholar
  20. 20.
    Dettmer W and Peric D (2006). A computational framework for fluid–structure interaction: finite element formulation and applications. Comp Meth Appl Mech Eng 195: 5754–5779 zbMATHCrossRefGoogle Scholar
  21. 21.
    Bazilevs Y, Calo VM, Zhang Y and Hughes TJR (2006). Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322 CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Khurram RA and Masud A (2006). A multiscale/stabilized formulation of the incompressible Navier–Stokes equations for moving boundary flows and fluid–structure interaction. Comput Mech 38: 403–416 CrossRefzbMATHGoogle Scholar
  23. 23.
    Kuttler U, Forster C and Wall WA (2006). A solution for the incompressibility dilemma in partitioned fluid–structure interaction with pure Dirichlet fluid domains. Comput Mech 38: 417–429 CrossRefGoogle Scholar
  24. 24.
    Lohner R, Cebral JR, Yang C, Baum JD, Mestreau EL and Soto O (2006). Extending the range of applicability of the loose coupling approach for FSI simulations. In: Bungartz, H-J and Schafer, M (eds) Fluid–structure interaction, vol 53. Lecture notes in computational science and engineering, pp 82–100. Springer, Heidelberg Google Scholar
  25. 25.
    Bletzinger K-U, Wuchner R and Kupzok A (2006). Algorithmic treatment of shells and free form-membranes in FSI. In: Bungartz, H-J and Schafer, M (eds) Fluid–structure interaction, vol 53. Lecture notes in computational science and engineering, pp 336–355. Springer, Heidelberg Google Scholar
  26. 26.
    Torii R, Oshima M, Kobayashi T, Takagi K and Tezduyar TE (2007). Influence of wall elasticity in patient-specific hemodynamic simulations. Comp Fluids 36: 160–168 zbMATHCrossRefGoogle Scholar
  27. 27.
    Masud A, Bhanabhagvanwala M and Khurram RA (2007). An adaptive mesh rezoning scheme for moving boundary flows and fluid–structure interaction. Comp Fluids 36: 77–91 zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Sawada T and Hisada T (2007). Fuid–structure interaction analysis of the two dimensional flag-in-wind problem by an interface tracking ALE finite element method. Comp Fluids 36: 136–146 zbMATHCrossRefGoogle Scholar
  29. 29.
    Wall WA, Genkinger S and Ramm E (2007). A strong coupling partitioned approach for fluid–structure interaction with free surfaces. Comp Fluids 36: 169–183 zbMATHCrossRefGoogle Scholar
  30. 30.
    Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) A fully-integrated approach to fluid–structure interaction. Comput Mech (in preparation)Google Scholar
  31. 31.
    Stein KR, Benney RJ, Kalro V, Johnson AA, Tezduyar TE (1997) Parallel computation of parachute fluid–structure interactions. In: Proceedings of AIAA 14th aerodynamic decelerator systems technology conference, AIAA paper 97-1505, San FranciscoGoogle Scholar
  32. 32.
    Tezduyar TE (1992). Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28: 1–44 zbMATHMathSciNetGoogle Scholar
  33. 33.
    Tezduyar TE, Behr M and Liou J (1992). A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comp Meth Appl Mech Eng 94: 339–351 zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Tezduyar TE, Behr M, Mittal S and Liou J (1992). A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comp Meth Appl Mech Eng 94: 353–371 zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Tezduyar TE (2003). Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Meth Fluids 43: 555–575 zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Hughes TJR, Brooks AN (1979) A multi-dimensional upwind scheme with no crosswind diffusion. In: Hughes TJR (ed) Finite element methods for convection dominated flows, AMD-vol 34. ASME, New York, pp 19–35Google Scholar
  37. 37.
    Brooks AN and Hughes TJR (1982). Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comp Meth Appl Mech Eng 32: 199–259 zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Tezduyar TE, Mittal S, Ray SE and Shih R (1992). Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comp Meth Appl Mech Eng 95: 221–242 zbMATHCrossRefGoogle Scholar
  39. 39.
    Hughes TJR, Franca LP and Balestra M (1986). A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška–Brezzi condition: a stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Meth Appl Mech Eng 59: 85–99 zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods – space–time formulations, iterative strategies and massively parallel implementations. In: New methods in transient analysis, PVP-vol 246/AMD-vol 143, ASME, New York, pp l7–24Google Scholar
  41. 41.
    Johnson AA and Tezduyar TE (1994). Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Meth Appl Mech Eng 119: 73–94 zbMATHCrossRefGoogle Scholar
  42. 42.
    Johnson AA and Tezduyar TE (1997). Parallel computation of incompressible flows with complex geometries. Int J Numer Meth Fluids 24: 1321–1340 zbMATHCrossRefGoogle Scholar
  43. 43.
    Tezduyar T (2001) Finite element interface-tracking and interface-capturing techniques for flows with moving boundaries and interfaces. In: Proceedings of the ASME symposium on fluid-physics and heat transfer for macro- and micro-scale gas–liquid and phase-change flows (CD-ROM), ASME paper IMECE2001/HTD-24206, ASME, New YorkGoogle Scholar
  44. 44.
    Tezduyar TE (2003) Stabilized finite element formulations and interface-tracking and interface-capturing techniques for incompressible flows. In: Hafez MM (ed) Numerical simulations of incompressible flows. World Scientific, New Jersey, pp 221–239Google Scholar
  45. 45.
    Stein K, Tezduyar T and Benney R (2003). Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70: 58–63 zbMATHCrossRefGoogle Scholar
  46. 46.
    Tezduyar TE, Sathe S, Senga M, Aureli L, Stein K, Griffin B (2005) Finite element modeling of fluid–structure interactions with space–time and advanced mesh update techniques. In: Proceedings of the 10th international conference on numerical methods in continuum mechanics (CD-ROM), Zilina, SlovakiaGoogle Scholar
  47. 47.
    Tezduyar TE and Sathe S (2007). Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Meth Fluids 54: 855–900 zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Mittal S and Tezduyar TE (1992). A finite element study of incompressible flows past oscillating cylinders and aerofoils. Int J Numer Meth Fluids 15: 1073–1118 CrossRefGoogle Scholar
  49. 49.
    Stein K, Benney R, Tezduyar T, Kalro V, Leonard J, Accorsi M (1999) 3-D computation of parachute fluid–structure interactions: performance and control. In: Proceedings of CEAS/AIAA 15th aerodynamic decelerator systems technology conference, AIAA paper 99-1714, Toulouse, FranceGoogle Scholar
  50. 50.
    Stein K, Benney R, Tezduyar T, Kalro V, Potvin J, Bretl T (1999) Fluid–structure interaction simulation of a cross parachute: comparison of numerical predictions with wind tunnel data. In: Proceedings of CEAS/AIAA 15th aerodynamic decelerator systems technology conference, AIAA Paper 99-1725, Toulouse, FranceGoogle Scholar
  51. 51.
    Stein K, Benney R, Tezduyar T and Potvin J (2001). Fluid–structure interactions of a cross parachute: numerical simulation. Comp Meth Appl Mech Eng 191: 673–687 zbMATHCrossRefGoogle Scholar
  52. 52.
    Stein KR, Benney RJ, Tezduyar TE, Leonard JW and Accorsi ML (2001). Fluid–structure interactions of a round parachute: modeling and simulation techniques. J Aircraft 38: 800–808 CrossRefGoogle Scholar
  53. 53.
    Tezduyar TE (2003). Stabilized finite element methods for flows with moving boundaries and interfaces. HERMIS Int J Comp Math Appl 4: 63–88 zbMATHMathSciNetGoogle Scholar
  54. 54.
    Tezduyar TE (2004) Finite element methods for fluid dynamics with moving boundaries and interfaces. In: Stein E, De Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, vol 3. Fluids, Chap 17. Wiley, New YorkGoogle Scholar
  55. 55.
    Tezduyar TE (2004) Moving boundaries and interfaces. In: Franca LP, Tezduyar TE, Masud A (eds) Finite element methods: 1970’s and beyond, CIMNE, Barcelona, pp 205–220Google Scholar
  56. 56.
    Tezduyar TE (2007). Finite elements in fluids: special methods and enhanced solution techniques. Comp Fluids 36: 207–223 CrossRefMathSciNetGoogle Scholar
  57. 57.
    Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J and Schwaab M (2007). Modeling of fluid–structure interactions with the space–time finite elements: arterial fluid mechanics. Int J Numer Meth Fluids 54: 901–922 zbMATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    Tezduyar TE, Pausewang J, Sathe S (2007) FSI modeling of sails. In: Onate E, Garcia J, Bergan P, Kvamsdal T (eds) Marine 2007, CIMNE, BarcelonaGoogle Scholar
  59. 59.
    Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2007) Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique. Int J Numer Meth Fluids. DOI: 10.1002/fld.1633
  60. 60.
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Crabtree J, Christopher J (2007) Air–fabric interaction modeling with the stabilized space–time FSI technique. In: Proceedings of the third Asian-Pacific congress on computational mechanics (CD-ROM), KyotoGoogle Scholar
  61. 61.
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech. doi: 10.1007/s00466-008-0261-7
  62. 62.
    Saad Y and Schultz M (1986). GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7: 856–869 zbMATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    Karypis G and Kumar V (1998). A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20: 359–392 CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Tayfun E. Tezduyar
    • 1
  • Sunil Sathe
    • 1
  • Matthew Schwaab
    • 1
  • Jason Pausewang
    • 1
  • Jason Christopher
    • 1
  • Jason Crabtree
    • 2
  1. 1.Mechanical EngineeringRice UniversityHoustonUSA
  2. 2.Civil and Mechanical EngineeringUS Military Academy WestPointNew YorkUSA

Personalised recommendations