Computational Mechanics

, Volume 42, Issue 4, pp 607–618 | Cite as

Atomistic-based continuum constitutive relation for microtubules: elastic modulus prediction

  • Hanqing Jiang
  • Liying Jiang
  • Jonathan D. Posner
  • Bryan D. Vogt
Original Paper

Abstract

Mechanical behavior of cells is primarily governed by the cytoskeleton (CSK), a remarkable system of filaments consisting of microtubules, actin filaments and intermediate filaments. This system defines the shape and bulk mechanical properties of the cell. In order to understand how the CSK network influences the mechanical behavior of living cells from a theoretical perspective, the mechanical properties of an individual CSK filament must first be properly described. Existing atomistic simulation methods have computational size limitations; conversely, conventional continuum mechanics lack fundamental nanoscale information. Here a new simulation method is developed that bridges the gap between these two simulation regimes using an atomistic-based continuum constitutive relation for microtubules based on the interatomic potential for proteins and specific atomic structures. This theory is used to predict the elastic modulus of microtubules, which agrees with the range of experimentally measured values without any parameter fitting. The proposed method is applicable to other biopolymers if the subunits are bonded through noncovalent bonds.

Keywords

Microtubules Atomistic-based Continuum constitutive relation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2003) Molecular Biology of the Cell. GarlandGoogle Scholar
  2. 2.
    Suresh S (2006). Mechanical response of human red blood cells in health and disease: some structure property–function relationships. J Mater Res 21: 1871–1877 CrossRefMathSciNetGoogle Scholar
  3. 3.
    Suresh S, Spatz J, Mills JP, Micoulet A, Dao M, Lim CT, Beil M and Seufferlein T (2005). Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater 1: 15–30 CrossRefGoogle Scholar
  4. 4.
    Stamenovic D, Mijailovich SM, Tolic-Norrelykke IM, Chen JX and Wang N (2002). Cell prestress. II. Contribution of microtubules. Am J Physiol Cell Physiol 282: C617–C624 Google Scholar
  5. 5.
    Ingber DE (1993). Cellular tensegrity—defining new rules of biological design that govern the cytoskeleton. J Cell Sci 104: 613–627 Google Scholar
  6. 6.
    Wang N and Stamenovic D (2000). Contribution of intermediate filaments to cell stiffness, stiffening and growth. Am J Physiol Cell Physiol 279: C188–C194 Google Scholar
  7. 7.
    Sato M, Schwartz WH, Selden C and Pollard TD (1988). Mechanical properties of brain tubulin and microtubules. J Cell Biol 106: 1205–1211 CrossRefGoogle Scholar
  8. 8.
    Sato M, Leimbach G, Schwarz WH and Pollard TD (1985). Mechanical properties of actin. J Cell Biol 260: 8585–8592 Google Scholar
  9. 9.
    Kurachi M, Hoshi M and Tashiro H (1995). Buckling of a single microtubule by optical trapping forces—direct measurement of microtubule rigidity. Cell Motil Cytoskeleton 30: 221–228 CrossRefGoogle Scholar
  10. 10.
    Takasone T, Juodkazis S, Kawagishi Y, Yamaguchi A, Matsuo S, Sakakibara H, Nakayama H and Misawa H (2002). Flexural rigidity of a single microtubule. Jpn J Appl Phys Part 1-Regular Papers Short Notes & Review Papers 41: 3015–3019 Google Scholar
  11. 11.
    Elbaum M, Fygenson DK and Libchaber A (1996). Buckling microtubules in vesicles. Phys Rev Lett 76: 4078–4081 CrossRefGoogle Scholar
  12. 12.
    Fygenson DK, Elbaum M, Shraiman B and Libchaber A (1997). Microtubules and vesicles under controlled tension. Phys Rev E 55: 850–859 CrossRefGoogle Scholar
  13. 13.
    Fygenson DK, Flyvbjerg H, Sneppen K, Libchaber A and Leibler S (1995). Spontaneous nucleation of microtubules. Phys Rev E 51: 5058–5063 CrossRefGoogle Scholar
  14. 14.
    Kis A, Kasas S, Babic B, Kulik AJ, Benoit W, Briggs GAD, Schonenberger C, Catsicas S and Forro L (2002). Nanomechanics of microtubules. Phys Rev Lett 89: 248101–101 CrossRefGoogle Scholar
  15. 15.
    Chaudhuri O, Parekh SH and Fletcher DA (2007). Reversible stress softening of actin networks. Nat Mater 445: 295–298 CrossRefGoogle Scholar
  16. 16.
    Mizuno D, Tardin C, Schmidt CF and MacKinstosh FC (2007). Nonequilibrium mechanics of active cytoskeletal networks. Science 315: 370–373 CrossRefGoogle Scholar
  17. 17.
    Wagner O, Zinke J, Dancker P, Grill W and Bereiter-Hahn J (1999). Viscoelastic properties of f-actin, microtubules, f-actin/ alpha-actinin, and f-actin/hexokinase determined in microliter volumes with a novel nondestructive method. Biophys J 76: 2784–2796 Google Scholar
  18. 18.
    Schaap IAT, MacKintosh FC, Schmidt CF and Pablo PJ (2003). Deformation and collapse of microtubules on the nanometer scale. Phys Rev Lett 91: 4 CrossRefGoogle Scholar
  19. 19.
    Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S and Karplus M (1983). Charmm—a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4: 187–217 CrossRefGoogle Scholar
  20. 20.
    Weiner PK and Kollman PA (1981). Amber—assisted model-building with energy refinement—a general program for modeling molecules and their interactions. J Comput Chem 2: 287–303 CrossRefGoogle Scholar
  21. 21.
    Duan Y and Kollman PA (1998). Pathways to a protein folding intermediate observed in a 1-μs simulation in aqueous solution. Science 282: 740–744 CrossRefGoogle Scholar
  22. 22.
    Weber W, Helms V, McCammon JA and Langhoff PW (1999). Shedding light on the dark and weakly fluorescent states of green fluorescent proteins. Proc Natl Acad Sci USA 96: 6177–6182 CrossRefGoogle Scholar
  23. 23.
    Chu JW and Voth GA (2006). Coarse-grained modeling of the actin filament derived from atomistic-scale simulations. Biophys J 90: 1572–1582 CrossRefGoogle Scholar
  24. 24.
    Chu JW and Voth GA (2005). Allostery of actin filaments: molecular dynamics simulations and coarse-grained analysis. Proc Natl Acad Sci USA 102: 13111–13116 CrossRefGoogle Scholar
  25. 25.
    Wang YL (1984). Reorganization of actin filament bundles in living fibroblasts. J Cell Biol 99: 1478–1485 CrossRefGoogle Scholar
  26. 26.
    Stamenovic D and Ingber DE (2002). Models of cytoskeletal mechanics of adherent cells. Biomech Model Mechanobiol 1: 95–108 CrossRefGoogle Scholar
  27. 27.
    Janosi IM, Chretien D and Flyvbjerg H (1998). Modeling elastic properties of microtubule tips and walls. Eur Biophys J Biophys Lett 27: 501–513 Google Scholar
  28. 28.
    Nishimura S, Nagai S, Katoh M, Yamashita H, Saeki Y, Okada J, Hisada T, Nagai R and Sugiura S (2006). Microtubules modulate the stiffness of cardiomyocytes against shear stress. Circ Res 98: 81–87 CrossRefGoogle Scholar
  29. 29.
    Wada H and Netz RR (2006). Non-equilibrium hydrodynamics of a rotating filament. Europhys Lett 75: 645–651 CrossRefMathSciNetGoogle Scholar
  30. 30.
    Stamenovic D and Wang N (2000). Invited review: engineering approaches to cytoskeletal mechanics. J Appl Physiol 89: 2085–2090 Google Scholar
  31. 31.
    Stamenovic D and Coughlin MF (1999). The role of prestress and architecture of the cytoskeleton and deformability of cytoskeletal filaments in mechanics of adherent cells: a quantitative analysis. J Theor Biol 201: 63–74 CrossRefGoogle Scholar
  32. 32.
    Sultan C, Stamenovic D and Ingber DE (2004). A computational tensegrity model predicts dynamic rheological behaviors in living cells. Ann Biomed Eng 32: 520–530 CrossRefGoogle Scholar
  33. 33.
    Liu WK, Liu YL, Farrell D, Zhang L, Wang XS, Fukui Y, Patankar N, Zhang YJ, Bajaj C, Lee J, Hong JH, Chen XY and Hsu HY (2006). Immersed finite element method and its applications to biological systems. Comput Meth Appl Mech Eng 195: 1722–1749 MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Boey SK, Boal DH and Discher DE (1998). Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models. Biophys J 75: 1573–1583 Google Scholar
  35. 35.
    Tadmor EB, Ortiz M and Phillips R (1996). Quasicontinuum analysis of defects in solids. Philos Mag Phys Condens Matter Struct Defects Mech Prop 73: 1529–1563 Google Scholar
  36. 36.
    Tadmor EB, Phillips R and Ortiz M (1996). Mixed atomistic and continuum models of deformation in solids. Langmuir 12: 4529–4534 CrossRefGoogle Scholar
  37. 37.
    Miller R, Tadmor EB, Phillips R and Ortiz M (1998). Quasicontinuum simulation of fracture at the atomic scale. Modell Simul Mater Sci Eng 6: 607–638 CrossRefGoogle Scholar
  38. 38.
    Shenoy VB, Miller R, Tadmor EB, Phillips R and Ortiz M (1998). Quasicontinuum models of interfacial structure and deformation. Phys Rev Lett 80: 742–745 CrossRefGoogle Scholar
  39. 39.
    Shenoy VB, Miller R, Tadmor EB, Rodney D, Phillips R and Ortiz M (1999). An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method. J Mech Phys Solids 47: 611–642 MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Friesecke G and James RD (2000). A scheme for the passage from atomic to continuum theory for thin films, nanotubes and nanorods. J Mech Phys Solids 48: 1519–1540 MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Arroyo M and Belytschko T (2002). An atomistic-based finite deformation membrane for single layer crystalline films. J Mech Phys Solids 50: 1941–1977 MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Xiao SP and Yang WX (2007). A temperature-related homogenization technique and its implementation in the meshfree particle method for nanoscale simulations. Int J Numer Methods Eng 69: 2099–2125 CrossRefMathSciNetGoogle Scholar
  43. 43.
    Xiao SP and Yang WX (2006). Temperature-related Cauchy–Born rule for multiscale modeling of crystalline solids. Comput Mater Sci 37: 374–379 CrossRefGoogle Scholar
  44. 44.
    Chung PW and Narnburu RR (2003). On a formulation for a multiscale atomistic-continuum homogenization method. Int J Solids Struct 40: 2563–2588 MATHCrossRefGoogle Scholar
  45. 45.
    Jiang H, Huang Y and Hwang KC (2007). Mechanics of carbon nanotubes: a continuum theory based on interatomic potentials. Key Eng Mater 340(341): 11–20 Google Scholar
  46. 46.
    Jiang H, Zhang P, Liu B, Huang Y, Geubelle PH, Gao H and Hwang KC (2003). The effect of nanotube radius on the constitutive model for carbon nanotubes. Comput Mater Sci 28: 429–442 CrossRefGoogle Scholar
  47. 47.
    Zhang P, Jiang H, Huang Y, Geubelle PH and Hwang KC (2004). An atomistic-based continuum theory for carbon nanotubes: analysis of fracture nucleation. J Mech Phys Solids 52: 977–998 MATHCrossRefGoogle Scholar
  48. 48.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW and Kollman PA (1995). A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J Am Chem Soc 117: 5179–5197 CrossRefGoogle Scholar
  49. 49.
    Chretien D, Metoz F, Verde F, Karsenti E and Wade RH (1992). Lattice-defects in microtubules—protofilament numbers vary within individual microtubules. J Cell Biol 117: 1031–1040 CrossRefGoogle Scholar
  50. 50.
    Jiang LY, Huang Y, Jiang H, Ravichandran G, Gao H, Hwang KC and Liu B (2006). A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force. J Mech Phys Solids 54: 2436–2452 MATHCrossRefGoogle Scholar
  51. 51.
    Symon K (1971). Mechanics. Addison-Wesley, Reading Google Scholar
  52. 52.
    Gittes F, Mickey B, Nettleton J and Howard J (1993). Flexural rigidity of microtubules and actin-filaments measured from thermal fluctuations in shape. J Cell Biol 120: 923–934 CrossRefGoogle Scholar
  53. 53.
    Jiang H, Huang Y and Hwang KC (2005). A finite-temperature continuum theory based on interatomic potentials. J Eng Mater Technol Trans ASME 127: 408–416 CrossRefGoogle Scholar
  54. 54.
    Nogales E, Wolf SG and Downing KH (1998). Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391: 199–203 CrossRefGoogle Scholar
  55. 55.
    Desai A and Mitchison TJ (1997). Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 13: 83–117 CrossRefGoogle Scholar
  56. 56.
    Walker RA, Pryer NK and Salmon ED (1991). Dilution of individual microtubules observed in real-time in vitro—evidence that cap size is small and independent of elongation rate. J Cell Biol 114: 73–81 CrossRefGoogle Scholar
  57. 57.
    Walker RA, Obrien ET, Pryer NK, Soboeiro MF, Voter WA, Erickson HP and Salmon ED (1988). Dynamic instability of individual microtubules analyzed by video light-microscopy—rate constants and transition frequencies. J Cell Biol 107: 1437–1448 CrossRefGoogle Scholar
  58. 58.
    Fygenson DK, Braun E and Libchaber A (1994). Phase-diagram of microtubules. Phys Rev E 50: 1579–1588 CrossRefGoogle Scholar
  59. 59.
    Kinoshita K, Arnal I, Desai A, Drechsel DN and Hyman AA (2001). Reconstitution of physiological microtubule dynamics using purified components. Science 294: 1340–1343 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Hanqing Jiang
    • 1
  • Liying Jiang
    • 2
  • Jonathan D. Posner
    • 1
  • Bryan D. Vogt
    • 3
  1. 1.Department of Mechanical and Aerospace EngineeringArizona State UniversityTempeUSA
  2. 2.Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonCanada
  3. 3.Department of Chemical EngineeringArizona State UniversityTempeUSA

Personalised recommendations