Advertisement

Computational Mechanics

, Volume 41, Issue 5, pp 661–681 | Cite as

On variational sensitivity analysis and configurational mechanics

  • Daniel MaternaEmail author
  • Franz-Joseph Barthold
Original Paper

Abstract

This contribution is concerned with the application of variational design sensitivity analysis in the context of structural optimization and configurational mechanics. In both disciplines we consider variations of the material configuration and we use techniques from variational sensitivity analysis in order to solve these problems. We derive the physical and material residual problem in one step by using standard optimization procedures. Furthermore, we investigate the sensitivity of the physical as well as the material residual problem and obtain the coupled saddle point problem based on these sensitivities. Both problems are coupled by the pseudo load operator, which plays an important role by the solution of structural optimization problems. By means of computational examples from mesh optimization and shape optimization, we demonstrate the capability of the proposed theoretical framework.

Keywords

Variational sensitivity analysis Configurational mechanics Mesh optimization Shape optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Askes H, Kuhl E, Steinmann P (2004) An ALE formulation based on spatial and material settings of continuum mechanics. Part 2: Classification and applications. Comput Methods Appl Mech Eng 193:4223–4245Google Scholar
  2. 2.
    Askes H, Bargmann S, Kuhl E and Steinmann P (2005). Structural optimisation by simultaneous equilibration of spatial and material forces. Commun Numer Meth Eng 21: 433–442 zbMATHCrossRefGoogle Scholar
  3. 3.
    Barthold FJ (2002) Zur Kontinuumsmechanik inverser Geometrieprobleme. Habilitationsschrift, Braunschweiger Schriften zur Mechanik 44-2002, TU Braunschweig, URL http://hdl.handle.net/2003/23095
  4. 4.
    Barthold FJ (2003). A structural optimization viewpoint on configurational mechanics. Proc Appl Math Mech 3: 246–247 CrossRefGoogle Scholar
  5. 5.
    Barthold FJ (2005). On structural optimisation and configurational mechanics. In: Steinmann, P and Maugin, GA (eds) Mechanics of material forces, vol 11., pp 219–228. Springer, Heidelberg CrossRefGoogle Scholar
  6. 6.
    Barthold FJ (2007) Remarks on variational shape sensitivity analysis based on local coordinates. Eng Anal Bound Elem (in press)Google Scholar
  7. 7.
    Barthold FJ and Mesecke S (1999). Remarks on computing the energy release rate and its sensitivities. In: Mota Soares, C, Mota Soares, C and Freitas, M (eds) Mechanics of composite materials and structures, nato science series, Serie E: Applied Science, vol 361., pp 341–350. Kluwer, Dordrecht Google Scholar
  8. 8.
    Barthold FJ and Stein E (1996). A continuum mechanical based formulation of the variational sensitivity analysis in structural optimization. Part I. Anal Struct Optim 11(1/2): 29–42 CrossRefGoogle Scholar
  9. 9.
    Barthold FJ, Wiechmann K (2006) A comparison of displacement and mixed finite element formulations for variational design sensitivity analysis. In: Mota Soares CA et al (ed) III European conference on computational mechanics, Paper 2003Google Scholar
  10. 10.
    Bendsøe MP and Sigmund O (2003). Topology optimization-theory, methods and applications. Springer, Heidelberg Google Scholar
  11. 11.
    Benzi M and Golub GH (2004). A preconditioner for generalized saddle point problems. Siam J Matrix Anal Appl 26(1): 20–41 zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Bertram A (1989). Axiomatische Einführung in die Kontinuumsmechanik. BI-Wissenschaftsverlag, Mannheim zbMATHGoogle Scholar
  13. 13.
    Braun M (1997). Configurational forces induced by finite-element discretisation. Proc Estonian Acad Sci Phys Math 46: 24–31 zbMATHMathSciNetGoogle Scholar
  14. 14.
    Braun M (2005). Structural optimization by material forces. In: Steinmann, P and Maugin, GA (eds) Mechanics of material forces, vol 11., pp 211–218. Springer, Heidelberg CrossRefGoogle Scholar
  15. 15.
    Carpenter WC and Zendegui S (1982). Optimum nodal locations for a finite element idealization. Eng Optim 5: 215–221 CrossRefGoogle Scholar
  16. 16.
    Carroll WE and Barker RM (1973). A theorem for optimum finite-element idealizations. Int J Solids Struct 9: 883–895 CrossRefMathSciNetGoogle Scholar
  17. 17.
    Choi KK, Kim NH (2005a) Structural sensitivity analysis and optimization 1—Linear systems. Mechanical Engineering Series. Springer, BerlinGoogle Scholar
  18. 18.
    Choi KK, Kim NH (2005b) Structural sensitivity analysis and optimization 2—Nonlinear systems and applications, Mechanical Engineering Series. Springer, BerlinGoogle Scholar
  19. 19.
    Dems K and Mróz Z (1978). Multiparameter structural shape optimization by the finite element method. Int J Numer Methods Eng 13(2): 247–263 zbMATHCrossRefGoogle Scholar
  20. 20.
    Engl HW, Hanke M and Neubauer A (2000). Regularization of inverse problems. Kluver, Dordrecht Google Scholar
  21. 21.
    Eshelby JD (1951). The force on an elastic singularity. Philos Trans R Soc Lond 244: 87–112 CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Eshelby JD (1975). The elastic energy-momentum tensor. J Elast 5: 321–335 zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Golub GH and Loan CFV (1996). Matrix computations, 3rd edn. The Johns Hopkins University Press, Baltimore zbMATHGoogle Scholar
  24. 24.
    Govindjee S and Mihalic PA (1996). Computational methods for inverse finite elastostatics. Comput Methods Appl Mech Eng 136(1–2): 47–57 zbMATHCrossRefGoogle Scholar
  25. 25.
    Govindjee S and Mihalic PA (1998). Computational methods for inverse deformations in quasi-incompressible finite elasticity. Int J Numer Meth Eng 43(5): 821–838 zbMATHCrossRefGoogle Scholar
  26. 26.
    Gurtin ME (2000). Configurational forces as basic concepts of continuum physics. Springer, New York Google Scholar
  27. 27.
    Kalpakides VK and Balassas KG (2005). The inverse deformation mapping in the finite element method. Philos Mag 85(33–35): 4257–4275 CrossRefGoogle Scholar
  28. 28.
    Kalpakides VK, Maugin G (eds) (2004) Configurational mechanics. A.A. Balkema, Amsterdam zbMATHGoogle Scholar
  29. 29.
    Kamat MP (1993). Structural optimization: status and promise. American Institute of Aeronautics and Astronautics, Washington Google Scholar
  30. 30.
    Kienzler R and Herrmann G (2000). Mechanics in material space. Springer, Berlin zbMATHGoogle Scholar
  31. 31.
    Kuhl E, Askes H, Steinmann P (2004) An ALE formulation based on spatial and material settings of continuum mechanics. Part 1: Generic hyperelastic formulation. Comput Methods Appl Mech Eng 193:4207–4222Google Scholar
  32. 32.
    Marsden JE and Hughes TJR (1994). Mathematical foundations of elasticity. Dover, New York Google Scholar
  33. 33.
    Materna D and Barthold FJ (2006). Coherence of structural optimization and configurational mechanics. Proc Appl Math Mech 6(1): 245–246 10.1002/pamm.200610103 CrossRefGoogle Scholar
  34. 34.
    Materna D, Barthold FJ (2006b) Relations between structural optimization and configurational mechanics with applications to mesh optimization. In: Sienz J, Querin OM, Toropov VV, Gosling PD (eds) Proceedings of the 6th ASMO-UK/ISSMO Conference on Engineering Design Optimization, St Edmund Hall, Oxford, UK, University of Leeds, UK, pp 173–181Google Scholar
  35. 35.
    Materna D, Barthold FJ (2007a) The use of singular value decomposition in sensitivity analysis and mesh optimization. (submitted)Google Scholar
  36. 36.
    Materna D, Barthold FJ (2007b) Variational design sensitivity analysis in the context of structural optimization and configurational mechanics. Int J Fract (in press)Google Scholar
  37. 37.
    Maugin GA (1993). Material inhomogeneities in elasticity. Chapman & Hall, London zbMATHGoogle Scholar
  38. 38.
    Maugin GA (1995). Material forces: concepts and applications. Appl Mech Rev 48: 213–245 MathSciNetCrossRefGoogle Scholar
  39. 39.
    Maugin GA and Trimarco C (1992). Pseudomomentum and material forces in nonlinear elasticity: variational formulations and application to brittle fracture. Acta Mech 94: 1–28 CrossRefMathSciNetzbMATHGoogle Scholar
  40. 40.
    McNeice GM and Marcal PE (1973). Optimization of finite element grids based on minimum potential energy. ASME J Eng Ind 95(1): 186–190 Google Scholar
  41. 41.
    Mosler J and Ortiz M (2006). On the numerical modeling of variational arbitrary lagrangian-eulerian (vale) formulations. Int J Numer Meth Eng 67: 1272–1289 zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Mueller R and Maugin GA (2002). On material forces and finite element discretizations. Comput Mech 29: 52–60 zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Mueller R, Kolling S and Gross D (2002). On configurational forces in the context of the finite element method. Int J Numer Meth Eng 53: 1557–1574 zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Mueller R, Gross D and Maugin GA (2004). Use of material forces in adaptive finite element methods. Comput Mech 33: 421–434 zbMATHCrossRefGoogle Scholar
  45. 45.
    Nocedal J and Wright SJ (1999). Numerical optimization. Springer, Heidelberg zbMATHGoogle Scholar
  46. 46.
    Noll W (1972). A new mathematical theory of simple materials. Arch Ration Mech Anal 48(1): 1–50 zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Steinmann P (2000). Application of material forces to hyperelastic fracture mechanics. I. Continuum mechanical settings. Int J Solids Struct 37: 7371–7391 zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Steinmann P, Maugin GA (eds) (2005) Mechanics of material forces. Springer, Heidelberg zbMATHGoogle Scholar
  49. 49.
    Sussman T and Bathe KJ (1985). The gradient of the finite element variational indicator with respect to nodal point coordinates: an explicit calculation and applications in fracture mechanics and mesh optimization. Int J Numer Meth Eng 21(4): 763–774 zbMATHCrossRefGoogle Scholar
  50. 50.
    Thoutireddy P (2003) Variational arbitrary Lagrangian-Eulerian method. Phd thesis, California Institute of Technology, Passadena, CAGoogle Scholar
  51. 51.
    Thoutireddy P and Ortiz M (2004). A variational r-adaption and shape-optimization method for finite-deformation elasticity. Int J Numer Meth Eng 61(1): 1–21 zbMATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Truesdell C and Noll W (2004). The nonlinear field theories of mechanics, 3rd edn. Springer, Berlin Google Scholar
  53. 53.
    Wriggers P (2001). Nichtlineare finite-element-methoden. Springer, Heidelberg zbMATHGoogle Scholar
  54. 54.
    Zhang S and Belegundu A (1993). Mesh distortion control in shape optimization. AIAA J 31(7): 1360–1362 CrossRefGoogle Scholar

Copyright information

© Springer Verlag 2007

Authors and Affiliations

  1. 1.Chair of Numerical Methods and Information ProcessingUniversity of DortmundDortmundGermany

Personalised recommendations