Advertisement

Computational Mechanics

, Volume 41, Issue 5, pp 617–631 | Cite as

An advanced meshless LBIE/RBF method for solving two-dimensional incompressible fluid flows

  • Euripides J. SellountosEmail author
  • Adélia Sequeira
Original Paper

Abstract

The present work presents a meshless local boundary integral equation (LBIE) method for the solution of two-dimensional incompressible fluid flow problems governed by the Navier–Stokes equations. The method uses, for its meshless implementation, nodal points spread over the analyzed domain and employs in an efficient way the radial basis functions (RBF) for the interpolation of the interior and boundary variables. The inverse matrix of the RBF is computed only once for every nodal point and the interpolation functions are evaluated by the inner product of the inverse matrix with the weight vector associated to the integration point. This technique leads to a fast and efficient meshless approach, the locality of the method is maintained and the system matrices are banded with small bandwidth. The velocity–vorticity approach of the Navier–Stokes equations is adopted and the LBIEs are derived for the velocity and the vorticity field, resulting in a very stable and accurate implementation. The evaluation of the volume integrals is accomplished via a very efficient and accurate technique by triangularizing the local area of the nodal point to the minimum number of well formed triangles. Numerical examples illustrate the proposed methodology and demonstrate its accuracy.

Keywords

Meshless method Navier–Stokes equations Incompressible flow Radial basis functions Velocity– vorticity Local boundary integral equation method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alujevic A, Kuhn G and Skerget P (1991). Boundary elements for the solution of Navier–Stokes equations. Comput Meth Appl Mech Eng 91: 1187–1201 CrossRefGoogle Scholar
  2. 2.
    Armaly BF, Durst F, Perreira JCF and Schonung B (1983). Experimental and theoritical investigation of backward facing-step flow. J Fluid Mech 48: 387–411 Google Scholar
  3. 3.
    Atluri SN and Shen S (2002). The meshless local Petrov–Galerkin (MLPG) method: a simple and less-costly alternative to the finite and boundary element method. Comput Meth Appl Mech Eng 3(1): 11–51 zbMATHMathSciNetGoogle Scholar
  4. 4.
    Codina R and Soto O (2004). Approximation of the incompressible Navier–Stokes equations usign orthogonal subscale stabilization and pressure segregation on anisotropic finite element meshes. Comput Meth Appl Mech Eng 193: 1403–1419 zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cuthill E, McKee J (1969) Reducing the bandwidth of sparse symmetric matrices. In: Proceedings of 24th national conference ACM, pp 157–172Google Scholar
  6. 6.
    Dennis SCR, Ingham DB and Cook RN (1979). Finite-difference methods for calculating steady incompressible flows in three dimensions. J Comput Phys 33: 325–339 zbMATHCrossRefGoogle Scholar
  7. 7.
    Ghia U, Ghia KN and Shin CT (1982). High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J Comput Phys 48: 387–411 zbMATHCrossRefGoogle Scholar
  8. 8.
    Gravemeier V, Wall W and Ramm E (2004). A three-level finite element method for the instationary incompressible Navier–Stokes equations. Comput Meth Appl Mech Eng 193: 1323–1366 zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Grigoriev MM and Dargush GF (1999). A poly-region boundary element method for incompressible viscous fluid flows. Int J Numer Methods Eng 46: 1127–1158 zbMATHCrossRefGoogle Scholar
  10. 10.
    Guiggiani M, Krishnasamy G, Rudolphi TJ and Rizzo FJ (1992). A general algorithm for the numerical solution of hypersingular boundary integral equations. ASME J Appl Mech 59: 604–614 zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Guiggiani M and Casalini P (1987). Direct computation of Cauchy principal value integrals in advanced boundary elements. Int J Numer Methods Eng 24: 1711–1720 zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Guj G and Stella F (1993). A vorticity–velocity method for the numerical solution of 3D incompressible flows. J Comput Phys 106: 286–298 zbMATHMathSciNetGoogle Scholar
  13. 13.
    Gunzburger MD and Peterson JS (1988). On finite element approximations of the stream function-vorticity and velocity-vorticity equations. Int J Numer Methods Fluids 8: 1229–1240 zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Guevremont G and Habashi WG (1990). Finite element solution of the Navier–Stokes equations by a velocity–vorticity method. Int J Numer Methods Fluids 10: 461–475 zbMATHCrossRefGoogle Scholar
  15. 15.
    Hardy RL (1990). Theory and applications of the multiquadrics-biharmonic method (20 years of discovery 1968–1988). Comput Math Appl 19: 163–208 CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Hribersek M and Skerget L (2005). Boundary domain integral method for high Reynolds viscous fluid flows in complex planar geometries. Comput Meth Appl Mech Eng 194: 4196–4220 zbMATHCrossRefGoogle Scholar
  17. 17.
    Jichun Li, Hon YC and Chen CS (2002). Numerical comparisons of two meshless methods using radial basis functions. Eng Anal Bound Elem 26: 205–225 zbMATHCrossRefGoogle Scholar
  18. 18.
    Lin H and Atluri SN (2001). The meshless local Petrov–Galerkin (MLPG) method for solving incompressible Navier–Stokes equations. Comput Model Eng Sci 2(2): 117–142 MathSciNetGoogle Scholar
  19. 19.
    Ma H and Kamiya N (2001). A general algorithm for accurate computation of field variables and its derivatives near the boundary in BEM. Eng Anal Bound Elem 25: 833–841 zbMATHCrossRefGoogle Scholar
  20. 20.
    Ma H and Kamiya N (2002). Distance tranformation for the numerical evaluation of near singular boundary integrals with various kernels in boundary element method. Eng Anal Bound Elem 26: 329–339 zbMATHCrossRefGoogle Scholar
  21. 21.
    Masud A and Khurram R (2006). A multiscale finite element method for the incompressible Navier–Stokes equations. Comput Meth Appl Mech Eng 195: 1750–1777 zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Nithiarasu P and Zienkiewicz OC (2006). Analysis of an explicit and matrix free fractional step method for incompressible flows. Comput Meth Appl Mech Eng 195: 5537–5551 zbMATHCrossRefGoogle Scholar
  23. 23.
    Sellountos EJ and Polyzos D (2003). A MLPG (LBIE) method for solving frequency domain elastic problems. Comput Model Eng Sci 4(6): 619–636 zbMATHGoogle Scholar
  24. 24.
    Shewchuk JR (2002). Delaunay refinement algorithms for triangular mesh generation. Comp Geometry 22: 21–74 zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Skerget L and Rek Z (1995). Boundary-domain integral method using a velocity–vorticity formulation. Eng Anal Bound Elem 15: 359–370 CrossRefGoogle Scholar
  26. 26.
    Skerget L, Hribersek M and Zunic Z (2003). Natural convection flows in complex cavities by BEM. Int J Numer Methods Heat Fluid 13(5/6): 720–736 zbMATHCrossRefGoogle Scholar
  27. 27.
    Sladek J, Sladek V and Atluri SN (2002). Application of the local boundary integral equation method to boundary value problems. Int Appl Mech 38(9): 1025–1043 CrossRefMathSciNetGoogle Scholar
  28. 28.
    Wang JG and Liu GR (2002). On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Comp Meth Appl Mech Eng 191: 2611–2630 zbMATHCrossRefGoogle Scholar
  29. 29.
    Wang JG and Liu GR (2002). A point interpolation meshless method based on radial basis functions. Int J Numer Methods Eng 54: 1623–1648 zbMATHCrossRefGoogle Scholar
  30. 30.
    Zhu T, Zhang JD and Atluri SN (1998). A local boundary integral equation (LBIE) method in computational mechanics and a meshless discretization approach. Comp Mech 21: 223–235 zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Zhu T, Zhang JD and Atluri SN (1999). A meshless numerical method based on the local boundary integral equation (LBIE) to solve linear and non-linear boundary value problems. Eng Anal Bound Elem 23: 375–389 zbMATHCrossRefGoogle Scholar
  32. 32.
    Zienkiewicz OC, Taylor RL (2000) The finite element method. Fluid mechanics 5th edn, vol 3. B-H, OxfordGoogle Scholar
  33. 33.
    Zunic Z, Hribersek M, Skerget L and Ravnik J (2007). 3-D boundary element-finite element method for velocity–vorticity formulation of the Navier–Stokes equations. Eng Anal Bound Elem 31: 259–266 CrossRefGoogle Scholar

Copyright information

© Springer Verlag 2007

Authors and Affiliations

  1. 1.Department of Mathematics and CEMAT, Instituto Superior TécnicoTechnical University of LisbonLisbonPortugal

Personalised recommendations