Advertisement

Computational Mechanics

, Volume 42, Issue 2, pp 239–250 | Cite as

A comparative study on finite element methods for dynamic fracture

  • Jeong-Hoon Song
  • Hongwu Wang
  • Ted BelytschkoEmail author
Original Paper

Abstract

The performance of finite element methods for dynamic crack propagation in brittle materials is studied. Three methods are considered: the extended finite element method (XFEM), element deletion method and interelement crack method. The extended finite element method is a method for arbitrary crack propagation without remeshing. In element deletion methods, elements that meet a fracture criterion are deleted. In interelement crack methods, the crack is limited to element edges; the separation of these edges is governed by a cohesive law. We show that XFEM and interelement method show similar crack speeds and crack paths. However, both fail to predict a benchmark experiment without adjustment of the energy release rate. The element deletion method performs very poorly for the refinements studied, and is unable to predict crack branching.

Keywords

Crack Path Dynamic Fracture Numer Meth Quadrilateral Mesh Crack Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ravi-Chandar K and Knauss WG (1984). An experimental investigation into dynamic fracture: II. microstructural aspects. Int J Fract 26: 65–80 CrossRefGoogle Scholar
  2. 2.
    Ravi-Chandar K and Knauss WG (1984). An experimental investigation into dynamic fracture: III. on steady-state crack propagation and crack branching. Int J Fract 26: 141–154 CrossRefGoogle Scholar
  3. 3.
    Ravi-Chandar K (2004). Dynamic fracture. Elsevier, Boston Google Scholar
  4. 4.
    Marder M and Gross S (1995). Origin of crack tip instabilities. J Mech Phys Solids 43(1): 1–48 CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Belytschko T and Black T (1999). Elastic crack growth in finite elements with minimal remeshing. Int J Numer Meth Eng 45(5): 601–620 CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Moës N, Dolbow J and Belytschko T (1999). A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46(1): 131–150 CrossRefzbMATHGoogle Scholar
  7. 7.
    Stolarska M, Chopp DL, Moës N and Belytschko T (2001). Modeling crack growth by level sets in the extended finite element method. Int J Numer Meth Eng 51(8): 943–960 CrossRefzbMATHGoogle Scholar
  8. 8.
    Belytschko T, Moës N, Usui S and Parimi C (2001). Arbitrary discontinuities in finite elements. Int J Numer Meth Eng 50(4): 993–1013 CrossRefzbMATHGoogle Scholar
  9. 9.
    Babuška I and Melenk JM (1997). The partition of unity method. Int J Numer Meth Eng 40(4): 727–758 CrossRefzbMATHGoogle Scholar
  10. 10.
    Belytschko T, Chen H, Xu J and Zi G (2003). Dynamic crack propagation based on loss of hyperbolicity with a new discontinuous enrichment. Int J Numer Meth Eng 58: 1873–1905 CrossRefzbMATHGoogle Scholar
  11. 11.
    Song J-H, Areias PMA and Belytschko T (2006). A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Meth Eng 67: 868–893 CrossRefzbMATHGoogle Scholar
  12. 12.
    Hansbo A and Hansbo P (2004). A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Meth Appl Mech Eng 193: 3523–3540 CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Areias PMA and Belytschko T (2006). A comment on the article: a finite element method for simulation of strong and weak discontinuities in solid mechanics. Comput Meth Appl Mech Eng 195: 1275–1276 CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Réthoré J, Gravouil A, Combescure A (2004) A stable numerical scheme for the finite element simulation of dynamic crack propagation with remeshing. Comput Meth Appl Mech Eng 193:42–44CrossRefGoogle Scholar
  15. 15.
    Réthoré J, Gravouil A and Combescure A (2005). An energy-conserving scheme for dynamic crack growth using the extended fnite element method. Int J Numer Meth Eng 63: 631–659 CrossRefzbMATHGoogle Scholar
  16. 16.
    Remmers JJC, Needleman A and Borst R   (2003). A cohesive segments method for the simulation of crack growth. Comput Mech 31: 69–77 CrossRefzbMATHGoogle Scholar
  17. 17.
    Xu X-P and Needleman A (1994). Numerical simulation of fast crack growth in brittle solids. J Mech Phys Solids 42(9): 1397–1434 CrossRefzbMATHGoogle Scholar
  18. 18.
    Camacho G and Ortiz M (1996). Computational modelling of impact damage in brittle materials. Int J Solids Struct 33: 2899–2938 CrossRefzbMATHGoogle Scholar
  19. 19.
    Lemaitre J, Chaboche JL (1990) Mechanics of solid materials. Cambridge University Press, Cambridge. ISBN 0 521 32853 5zbMATHGoogle Scholar
  20. 20.
    Hallquist JO (1998). LS-DYNA theory manual. Livemore software technology corporation, USA Google Scholar
  21. 21.
    Ortiz M and Pandolfi A (1999). A class of cohesive elements for the simulation of three-dimensional crack propagation. Int J Numer Meth Eng 44: 1267–1282 CrossRefzbMATHGoogle Scholar
  22. 22.
    Fineberg J, Gross SP, Marder M and Swinney HL (1991). Instability in dynamic fracture. Phys Rev Lett 67: 457–460 CrossRefGoogle Scholar
  23. 23.
    Sharon E and Fineberg J (1999). Confirming the continuum theory of dynamic brittle fracture for fast cracks. Lett Nature 397: 333–335 CrossRefGoogle Scholar
  24. 24.
    Ramulu M and Kobayashi AS (1985). Mechanics of crack curving and branching—a dynamic fracture analysis. Int J Fract 27: 187–201 CrossRefGoogle Scholar
  25. 25.
    Ravi-Chandar K (1998). Dynamic fracture of nominally brittle materials. Int J Fract 90: 83–102 CrossRefGoogle Scholar
  26. 26.
    Sharon E, Gross SP and Fineberg J (1995). Local crack branching as a mechanism for instability in dynamic fracture. Phys Rev Lett 74(25): 5096–5099 CrossRefGoogle Scholar
  27. 27.
    Sharon E and Fineberg J (1996). Microbranching instability and the dynamic fracture of brittle materials. Phys Rev B 54(10): 7128–7139 CrossRefGoogle Scholar
  28. 28.
    Fineberg J, Sharon E and Cohen G (2003). Crack front waves in dynamic fracture. Int J Fract 119: 247–261 CrossRefGoogle Scholar
  29. 29.
    Lemaitre J (1971) Evaluation of dissipation and damage in metal submitted to dynamic loading. In: Proceedings ICM 1Google Scholar
  30. 30.
    Kalthoff JF, Winkler S (1987) Failure mode transition at high rates of shear loading. International conference on impact loading and dynamic behavior of materials, vol 1. pp 185–195Google Scholar
  31. 31.
    Decker RF (1979) Source book on maraging steels. American Society for MetalsGoogle Scholar
  32. 32.
    Lee YJ and Freund LB (1990). Fracture initiation due to asymmetric impact loading of an edge cracked plate. J Appl Mech ASME 57: 104–111 CrossRefGoogle Scholar
  33. 33.
    Kalthoff JF (2000). Modes of dynamic shear failure in solids. Int J Fract 101: 1–31 CrossRefGoogle Scholar
  34. 34.
    Sharon E, Gross SP and Fineberg J (1996). Energy dissipation in dynamic fracture. Phys Rev Lett 76(12): 2117–2120 CrossRefGoogle Scholar
  35. 35.
    Bourdin B, Francfort GA and Marigo JJ (2000). Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4): 797–826 CrossRefMathSciNetzbMATHGoogle Scholar
  36. 36.
    Rabczuk T and Belytschko T (2004). Cracking particles: a simplified meshfree method for arbitray evolving cracks. Int J Numer Meth Eng 61(13): 2316–2343 CrossRefzbMATHGoogle Scholar
  37. 37.
    Papoulia KD, Vavasis SA and Ganguly P (2006). Spatial convergence of crack nucleation using a cohesive finite-element model on a pinwhell-based mesh. Int J Numer Meth Eng 67: 1–16 CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Verlag 2007

Authors and Affiliations

  1. 1.Theoretical and Applied MechanicsNorthwestern UniversityEvanstonUSA

Personalised recommendations