Computational Mechanics

, Volume 41, Issue 2, pp 279–291 | Cite as

Towards a taxonomy for multiscale methods in computational mechanics: building blocks of existing methods

  • Volker GravemeierEmail author
  • Stefan Lenz
  • Wolfgang A. Wall
Original Paper


Existing multiscale methods in computational mechanics are analyzed with respect to their computational building blocks, considering methods in both solid and fluid mechanics. From this analysis, a step towards a taxonomy for multiscale methods in computational mechanics is taken. The present article is not intended as a closed story; it is rather hoped that it may provide some basis for future discussions. Moreover, it might even provide a point of view to more clearly identify differences and similarities in the variety of multiscale methods currently existing or being developed in the future. The methods or their building blocks, respectively, are investigated with a view on their multiscale features regarding the underlying problem, spatial scale processing, and temporal scale processing. As expected, it turns out that the mechanics of the underlying problem strongly influences the necessary building blocks of an adequate multiscale method.


Taxonomy Multiscale methods Computational fluid mechanics Computational solid mechanics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham FF, Broughton JQ, Bernstein N and Kaxiras E (1998). Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture. Europhys Lett 44: 783–787 CrossRefGoogle Scholar
  2. 2.
    Bochev P, Christon M, Collis SS, Lehoucq R, Shadid J, Slepoy A, Wagner G (2004) A mathematical framework for multiscale science and engineering: the variational multiscale method and interscale transfer operators. SAND report 2004–2871, Sandia National LaboratoriesGoogle Scholar
  3. 3.
    Botasso CL (2002). Multiscale temporal integration. Comput Methods Appl Mech Eng 191: 2815–2830 CrossRefGoogle Scholar
  4. 4.
    Brandt A (2001). Multiscale scientific commputation: review 2001. In: Barth, T, Chan, T and Haimes, R (eds) Multiscale and multiresolution methods: theory and applications, pp 1–96. Springer, Heidelberg Google Scholar
  5. 5.
    Broughton JQ, Abraham FF, Bernstein N and Kaxiras E (1999). Concurrent coupling of length scales: methodology and application. Phys Rev B 60: 2391–2403 CrossRefGoogle Scholar
  6. 6.
    Calo VM (2005) Residual-based multiscale turbulence modeling: finite volume simulations of bypass transition. PhD Thesis, Department of Civil and Environmental Engineering, Stanford University, Scholar
  7. 7.
    Chen W and Fish J (2006). A generalized space-time mathematical homogenization theory for bridging atomistic and continuum scales. Int J Numer Meth Eng 67: 253–271 zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cioranescu D and Donato P (1999). An introduction to homogenization In: Oxford lecture series in mathematics and its applications, vol 17.. Oxford University Press, New York Google Scholar
  9. 9.
    Collis SS (2001). Monitoring unresolved scales in multiscale turbulence modeling. Phys Fluids 13: 1800–1806 CrossRefGoogle Scholar
  10. 10.
    Collis SS (2002) The DG/VMS method for unified turbulence simulation. AIAA paper 2002-3124, St. Louis, June 24–27Google Scholar
  11. 11.
    Curtin WA and Miller RE (2003). Atomistic/continuum coupling in computational materials science. Model Simul Mater Sci Eng 11: R33–R68 CrossRefGoogle Scholar
  12. 12.
    Domaradzki JA and Yee PP (2000). The subgrid-scale estimation model for high Reynolds number turbulence. Phys Fluids 12: 193–196 CrossRefzbMATHGoogle Scholar
  13. 13.
    Dubois T, Jauberteau F and Temam R (1999). Dynamic multilevel methods and the numerical simulation of turbulence. Cambridge University Press, Cambridge Google Scholar
  14. 14.
    E W and Engquist B (2003). The heterogeneous multiscale methods. Comm Math Sci 1: 87–132 zbMATHMathSciNetGoogle Scholar
  15. 15.
    E W, Li X and Vanden-Eijnden E (2004). Some recent progress in multiscale modeling. In: Attinger, S and Koumoutsakos, P (eds) Multiscale modeling and simulation. Lecture notes in computational science and engineering, vol 39., pp 3–22. Springer, Berlin Google Scholar
  16. 16.
    E W, Engquist B, Li X, Ren W and Vanden-Eijnden E (2007). The heterogeneous multiscale method: a review. Commun Comput Phys 2: 367–450 MathSciNetzbMATHGoogle Scholar
  17. 17.
    Farhat C, Harari I and Franca LP (2001). The discontinuous enrichment method. Comput Methods Appl Mech Eng 190: 6455–6479 zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Fish J and Chen W (2004). Discrete-to-continuum bridging based on multigrid principles. Comput Methods Appl Mech Eng 193: 1693–1711 zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Fish J and Yuan Z (2005). Multiscale enrichment based on partition of unity. Int J Numer Methods Eng 62: 1341–1359 zbMATHCrossRefGoogle Scholar
  20. 20.
    Franca LP and Macedo AP (1998). A two-level finite element method and its application to the Helmholtz equation. Int J Numer Meth Eng 43: 23–32 zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Franca LP, Madueira AL and Valentin F (2005). Towards multiscale functions: enriching finite element spaces with local but not bubble-like functions. Comput Methods Appl Mech Eng 194: 3006–3021 zbMATHCrossRefGoogle Scholar
  22. 22.
    Garikipati K and Hughes TJR (1998). A study of strain localization in a multiple scale framework—the one-dimensional problem. Comput Methods Appl Mech Eng 159: 193–222 zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Gravemeier V (2006). Scale-separating operators for variational multiscale large eddy simulation of turbulent flows. J Comput Phys 212: 400–435 zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Gravemeier V (2006). The variational multiscale method for laminar and turbulent flow. Arch Comput Meth Eng 13: 249–324 MathSciNetCrossRefGoogle Scholar
  25. 25.
    Gravemeier V, Wall WA (2007) A “divide-and-conquer” spatial and temporal multiscale method for transient convection-diffusion-reaction equations. Int J Numer Meth Fluids (in press)Google Scholar
  26. 26.
    Gravemeier V, Wall WA and Ramm E (2004). A three-level finite element method for the instationary incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 193: 1323–1366 zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Gravouil A and Combescure A (2001). Multi-time-step explicit-implicit method for non-linear structural dynamics. Int J Numer Methods Eng 50: 199–225 zbMATHCrossRefGoogle Scholar
  28. 28.
    Hou TY (2005). Multiscale modelling and computation of fluid flow. Int J Numer Methods Fluids 47: 707–719 zbMATHCrossRefGoogle Scholar
  29. 29.
    Hou TY and Wu X-H (1997). A multiscale finite element method for elliptic problems in composite materials and porous media. J Comput Phys 134: 169–189 zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Hughes TJR (1995). Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput Methods Appl Mech Eng 127: 387–401 zbMATHCrossRefGoogle Scholar
  31. 31.
    Hughes TJR and Stewart JR (1996). A space-time formulation for multiscale phenomena. J Comput Appl Math 74: 217–229 zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Hughes TJR, Feijoo GR, Mazzei L and Quincy J-B (1998). The variational multiscale method—a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166: 3–24 zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Hughes TJR, Mazzei L and Jansen KE (2000). Large eddy simulation and the variational multiscale method. Comput Vis Sci 3: 47–59 zbMATHCrossRefGoogle Scholar
  34. 34.
    Hughes TJR, Mazzei L, Oberai AA and Wray AA (2001). The multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence. Phys Fluids 13: 505–512 CrossRefGoogle Scholar
  35. 35.
    Hund A, Ramm E (2007) Locality constraints within multiscale model for non-linear material behaviour. Int J Numer Methods Eng (in press)Google Scholar
  36. 36.
    Jansen KE, Tejada-Martinez AE (2002) An evaluation of the variational multiscale model for large-eddy simulation while using a hierarchical basis. AIAA paper 2002–0283, Reno, NV, January 14–17Google Scholar
  37. 37.
    Jeanmart H, Winckelmans GS (2002) Comparison of recent dynamic subgrid-scale models in turbulent channel flow. In: Proceedings of the summer program 2002. Stanford University and NASA Ames Research Center, Center for Turbulence Research, pp 105–116Google Scholar
  38. 38.
    John V and Kaya S (2005). A finite element variational multiscale method for the Navier–Stokes equations. SIAM J Sci Comp 26: 1485–1503 zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Kemenov K, Menon S (2003) Two level simulation of high-Reynolds number non-homogeneous turbulent flows. AIAA paper 2003-84Google Scholar
  40. 40.
    Kevrekidis IG, Gear CW, Hyman JM, Kevrekidis PG, Runborg O and Theodoropoulos C (2003). Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system-level analysis. Comm Math Sci 1: 715–762 zbMATHMathSciNetGoogle Scholar
  41. 41.
    Koobus B and Farhat C (2004). A variational multiscale method for the large eddy simulation of compressible turbulent flows on unstructured meshes—application to vortex shedding. Comput Methods Appl Mech Eng 193: 1367–1383 zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Li X and E W (2005). Multiscale modeling of the dynamics of solids at finite temperature. J Mech Phys Solids 53: 1650–1685 CrossRefMathSciNetzbMATHGoogle Scholar
  43. 43.
    McDonough JM, Bywater RJ, Buell JC (1984) An investigation of strange attractor theory and small-scale turbulence. AIAA paper 84-1674Google Scholar
  44. 44.
    Michopoulos JG, Farhat C and Fish J (2005). Survey on modeling and simulation of multiphysics systems. J Comput Inf Sci Eng 5: 198–213 CrossRefGoogle Scholar
  45. 45.
    Miller RE and Tadmor EB (2002). The quasicontinuum method: overview, applications and current directions. J Comput-Aid Mater Des 9: 203–239 CrossRefGoogle Scholar
  46. 46.
    Oden JT, Prudhomme S, Romkes A and Bauman PT (2006). Multiscale modeling of physical phenomena: adaptive control of models. SIAM J Sci Comp 28: 2359–2389 CrossRefMathSciNetzbMATHGoogle Scholar
  47. 47.
    Park HS and Liu WK (2004). An introduction and tutorial on multiple-scale analysis in solids. Comput Methods Appl Mech Eng 193: 1733–1772 zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Rudd RE and Broughton JQ (1998). Coarse-grained molecular dynamics and the atomic limit of finite elements. Phys Rev B 58: 5893–5896 CrossRefGoogle Scholar
  49. 49.
    Ren W and E W (2005). Heterogeneous multiscale method for the modeling of complex fluids and micro-fluidics. J Comput Phys 204: 1–26 zbMATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Sagaut P (2006). Large eddy simulation for incompressible flows, 3rd edn. Springer, Heidelberg Google Scholar
  51. 51.
    Shephard MS, Seol ES, FrantzDale B (2007) Toward a multi-model hierarchy to support multiscale simulations. SCOREC Report 2007-02, Scientific Computation Research Center, Rensselaer Polytechnic InstituteGoogle Scholar
  52. 52.
    Shilkrot LE, Miller RE and Curtin WA (2002). Coupled atomistic and discrete dislocation plasticity. Phys Rev Lett 89: 025501–1-4 CrossRefGoogle Scholar
  53. 53.
    Tadmor EB, Ortiz M and Phillips R (1996). Quasicontinuum analysis of defects in crystals. Phil Mag A 73: 1529–1563 CrossRefGoogle Scholar
  54. 54.
    Terracol M, Sagaut P and Basdevant C (2001). A multilevel algorithm for large-eddy simulation of turbulent compressible flows. J Comput Phys 167: 439–474 zbMATHCrossRefGoogle Scholar
  55. 55.
    Wagner GJ and Liu WK (2003). Coupling of atomistic and continuum simulations using a bridging scale decomposition. J Comput Phys 190: 249–274 zbMATHCrossRefGoogle Scholar
  56. 56.
    Xiao SP and Belytschko T (2004). A bridging domain method for coupling continua with molecular dynamics. Comput Methods Appl Mech Eng 193: 1645–1669 zbMATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    Zhou Y, Brasseur JG and Juneja A (2001). A rsolvable subfilter-scale model specific to large-eddy simulation of under-resolved turbulence. Phys Fluids 13: 2602–2610 CrossRefGoogle Scholar
  58. 58.
    Zohdi TI (2004). Homogenization methods and multiscale modeling. In:  Stein, E and Hughes, TJR (eds) Encyclopedia of computational mechanics. Solids and structures, vol 2, pp 407–430. Wiley, Chichester Google Scholar
  59. 59.
    Zohdi TI, Wriggers P (2005) Introduction to computational micromechanics. In: Lecture notes in applied and computational mechanics, vol 20. Springer, HeidelbergGoogle Scholar

Copyright information

© Springer Verlag 2007

Authors and Affiliations

  • Volker Gravemeier
    • 1
    • 2
    Email author
  • Stefan Lenz
    • 3
  • Wolfgang A. Wall
    • 2
  1. 1.Emmy Noether Research Group “Computational Multiscale Methods for Turbulent Combustion”Technical University of MunichGarchingGermany
  2. 2.Chair for Computational MechanicsTechnical University of MunichGarchingGermany
  3. 3.The Linde GroupMunichGermany

Personalised recommendations