Computational Mechanics

, Volume 41, Issue 1, pp 175–187 | Cite as

p-Adaptive Ck generalized finite element method for arbitrary polygonal clouds

  • Felício B. Barros
  • Clovis S. de Barcellos
  • Carlos A. Duarte
Original Paper

Abstract

A p-Adaptive Generalized Finite Element Method (GFEM) based on a Partition of Unity (POU) of arbitrary smoothness degree is presented. The shape functions are built from the product of a Shepard POU and enrichment functions. Shepard functions have a smoothness degree directly related to the weighting functions adopted in their definition. Here the weighting functions are obtained from boolean R-functions which allow the construction of Ck approximations, with k arbitrarily large, defined over a polygonal patch of elements, named cloud. The Element Residual Method is used to obtain error indicators by taking into account the typical nodal enrichment scheme of the method. This procedure is enhanced by using approximations with a high degree of smoothness as it eliminates the discontinuity of the stress field in the interior of each cloud. Adaptive analysis of plane elasticity problems are presented, and the performance of the technique is investigated.

Keywords

Generalized finite element method Partition of unity Error estimator Adaptivity Mesh reduction methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ainsworth M and Oden JT (1997). A posteriori error estimation in finite element analysis. Comput Methods Appl Mech Eng 142: 1–88 MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Babuška I and Melenk JM (1997). The partition of unity method. Int J Numer Methods Eng 40: 727–758 CrossRefGoogle Scholar
  3. 3.
    Babuška I and Rheinboldt WC (1978). Error estimates for adaptive finite element method computations. SIAM J Numer Anal 15: 736–753 CrossRefMathSciNetGoogle Scholar
  4. 4.
    Babuška I and Rheinboldt WC (1978). A posteriori error estimates for the finite element method. Int J Numer Methods Eng 12: 1597–1615 CrossRefGoogle Scholar
  5. 5.
    Babuška I and Rheinboldt WC (1979). Adaptive approaches and reliability estimations in finite element analysis. Comput Methods Appl Mech Eng 17(18): 519–540 CrossRefGoogle Scholar
  6. 6.
    Babuška I, Caloz G and Osborn JE (1994). Special finite element method for a classe of second order elliptic problems whith rough coefficients. SIAM J Numer Anal 31(4): 745–981 MathSciNetGoogle Scholar
  7. 7.
    Babuška I, Strouboulis T, Upadhyay CS and Gangaraj SK (1994). A model study of the quality of a posteriori estimators of linear elliptic problems. Part Ia: Error estimation in the interior of patchwise uniform grids of triangles. Comput Methods Appl Mech Eng 114: 307–378 CrossRefGoogle Scholar
  8. 8.
    Babuška I, Strouboulis T, Upadhyay CS, Gangaraj SK and Copps K (1994). Validation of a-posteriori error estimators by numerical approach. Int J Numer Methods Eng 37: 1073–1123 CrossRefGoogle Scholar
  9. 9.
    Bank RE and Weiser A (1985). Some a posteriori error estimators for elliptic partial defferential equations. Math Comput 44: 283–301 MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Barros FB, Proença SPB and de Barcellos CS (2004). On error estimator and shape p-adaptivity in the generalized finite element method. Int J Numer Methods Eng 60(14): 2373–2398 MATHCrossRefGoogle Scholar
  11. 11.
    Barros FB, de Barcellos CS, Guimarães W, Duarte CA (2006) On the polygonal cloud technique with arbitrary smooth approximation of the generalized finite method approach. (in portuguese). In: CD-Rom Proceedings - VI Simpósio de Mecânica Computacional (VI SIMMEC), AraxáGoogle Scholar
  12. 12.
    Belytschko T and Black T (1999). Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45: 601–620 MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Belytschko T, Lu Y and Gu L (1994). Element-free Galerkin methods. Int J Numer Methods Eng 37: 229–256 MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Belytschko T, Liu WK, Singer M (1998) On adaptivity and error criteria for meshfree method. In: Ladèveze P, Oden JT (eds) Advances in adaptive computational methods in mechanics, pp 217–228Google Scholar
  15. 15.
    Demkowicz L, Oden JT and Strouboulis T (1984). Adaptive finite elements for flow problems with moving boundaries. Part 1: Variational principles and a posteriori error estimates. Comput Methods Appl Mech Eng 46: 217–251 MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Duarte CA (1991) A study of the p-version finite elements for elasticity and potential problems, (in portuguese). Master thesis, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianpolis, SC, BrazilGoogle Scholar
  17. 17.
    Duarte CA, Oden JT (1995) Hp clouds - A meshless method to solve boundary-value problem. Tech. rep. TICAM, The University of Texas at Austin, technical ReportGoogle Scholar
  18. 18.
    Duarte CA and Oden JT (1996). An h-p adaptive method using cloud. Comput Methods Appl Mech Eng 139: 237–262 MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Duarte CA, Oden JT (1996) H-p Clouds-An h-p Meshless Method. In: Numerical methods for partial differential equations, Wiley, New York, pp 1–34Google Scholar
  20. 20.
    Duarte CA, Babuška I and Oden J (2000). Generalized finite element methods for three-dimensional structural mechanics problems. Comput Struct 77: 215–232 CrossRefGoogle Scholar
  21. 21.
    Duarte CA, Kim DJ and Quaresma DM (2006). Arbitrarily smooth generalized finite element approximations. Comput Methods Appl Mech Eng 196: 33–56 CrossRefMathSciNetGoogle Scholar
  22. 22.
    Edwards HC (1996) C finite element basis functions. Technical Report 96-45, TICAM, The University of Texas at AustinGoogle Scholar
  23. 23.
    Gordon WJ and Hall CA (1973). Construction of curvilinear co-ordinate systems and applications to mesh generation. Int J Numer Methods Eng 7: 461–477 MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Ladevèze P and Maunder EAW (1996). A general method for recovering equilibrating element tractions. Comput Methods Appl Mech Eng 137: 111–151 MATHCrossRefGoogle Scholar
  25. 25.
    Lancaster P and Salkauskas K (1981). Surfaces generated by moving least squares methods. Math Comput 37(155): 141–158 MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Li S, Lu H, Han W, Liu WK and Simkins DC (2004). Reproducing kernel element method. part II: I m/C n hierarchies. Comput Methods Appl Mech Eng 193: 953–987 MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Liu WK and Chen Y (1995). Wavelet and multiple scale reproducing kernel particle methods. Int J Numer Methods Fluids 21: 901–931 MATHCrossRefGoogle Scholar
  28. 28.
    Liu WK, Jun S and Zhang FY (1995). Reproducing kernel particle methods. Int J Numer Methods Eng 20: 1081–1106 MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Liu WK, Han W, Lu H, Li S and Cao J (2004). Reproducing kernel element method. part I: Theoretical formulation. Comput Methods Appl Mech Eng 193: 933–951 MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Lu H, Li S, Liu WK, Cao J and Simkins DC (2004). Reproducing kernel element method. part III: Generalized enrichment and applications. Comput Methods Appl Mech Eng 193: 989–1011 MATHCrossRefGoogle Scholar
  31. 31.
    Melenk JM (1995) On generalized finite element methods. Phd dissertation, University of Maryland, College ParkGoogle Scholar
  32. 32.
    Melenk JM and Babuška I (1996). The partition of unity finite element method: Basic theory and applications. Comput Methods Appl Mech Eng 39: 289–314 CrossRefGoogle Scholar
  33. 33.
    Mods N, Dolbow J and Belytschko T (1999). A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46: 131–150 CrossRefGoogle Scholar
  34. 34.
    Oden JT, Reddy JN (1976) An introduction to the mathematical theory of finite elements. Pure and applied mathematics, Wiley, New YorkGoogle Scholar
  35. 35.
    Oden JT, Demkowicz L, Rachowicz W and Westermann TA (1989). Toward a universal h-p adaptive finite element strategy, Part 2. A posteriori error estimation. Comput Methods Appl Mech Eng 77: 113–180 CrossRefMathSciNetGoogle Scholar
  36. 36.
    Oden JT, Duarte CA, Zienkiewicz OC (1996) A new cloud-based hp finite element method. Tech. rep., TICAM Report 96-55, The University of Texas at Austin, Austin, Texas, USAGoogle Scholar
  37. 37.
    Oden JT, Duarte CA and Zienkiewicz OC (1998). A new cloud-based hp finite element method. Comput Methods Appl Mech Eng 153: 117–126 MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Shapiro V (1991) Theory of R-functions and applications: a primer. Technical Report TR91-1219, Computer Science Departament, Cornell UniversityGoogle Scholar
  39. 39.
    Shepard D (1968) A two-dimensional function for irregularly spaced data. In: ACM National Conference, pp 517–524Google Scholar
  40. 40.
    Simkins DC Jr, Li S, Lu H, Liu WK (2004) Reproducing kernel element method. part IV: Global compatible C n (n ≥ 1) triangular hierarchy. Comput Methods Appl Mech Eng 1013–1034Google Scholar
  41. 41.
    Strouboulis T, Babuška I and Copps K (2000). The design and analysis of the generalized finite element method. Comput Methods Appl Mech Eng 181(1–3): 43–69 MATHCrossRefGoogle Scholar
  42. 42.
    Strouboulis T, Copps K and Babuška I (2001). The generalized finite element method. Comput Methods Appl Mech Eng 190: 4081–4193 MATHCrossRefGoogle Scholar
  43. 43.
    Strouboulis T, Zhang L, Wang D and Babuška I (2006). A posteriori error estimation for generalized finite element methods. Comput Methods Appl Mech Eng 195: 852–879 MATHCrossRefGoogle Scholar
  44. 44.
    Szabó B and Babuška I (1991). Finite Element Anal. Wiley, New York Google Scholar
  45. 45.
    Timoshenko SP and Goodier JN (1951). Theory of Elasticity. McGraw-Hill Book Co Inc, New York MATHGoogle Scholar

Copyright information

© Springer Verlag 2007

Authors and Affiliations

  • Felício B. Barros
    • 1
  • Clovis S. de Barcellos
    • 2
  • Carlos A. Duarte
    • 3
  1. 1.Department of Structural EngineeringFederal University of Minas GeraisBelo HorizonteBrazil
  2. 2.Graduate Program in Mechanical Engineering, Campus Universitrio - TrindadeFederal University of Santa CatarinaFlorianpolisBrazil
  3. 3.2122 Newmark Civil Engineering LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations