Advertisement

Computational Mechanics

, Volume 40, Issue 6, pp 1037–1052 | Cite as

Meshfree point collocation method with intrinsic enrichment for interface problems

  • Do Wan Kim
  • Wing Kam Liu
  • Young-Cheol Yoon
  • Ted Belytschko
  • Sang-Ho Lee
Original Paper

Abstract

A meshfree collocation method with an intrinsic wedge enrichment is presented for solving interface problems. To approximate the class of functions with discontinuous derivatives on the interface, the wedge is asymptotically added to the basis functions. A general class of wedge basis functions with specified orders of asymptotic behavior at the interface is developed for moving least square approximations. These are implemented in diffuse derivative methods where the shape functions are approximately differentiated. The reproducing properties of these approximations for the polynomial part and for the wedge function along straight boundaries of the basis are demonstrated. For curved boundaries, the reproducing properties of the wedge functions are more restricted. Numerical results show the ease of constructing the intrinsic enrichment and the robustness of the numerical scheme in solving interface problems.

Keywords

Meshfree collocation method Intrinsic wedge enrichment Discontinuous derivative Interface Reproducing properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318zbMATHCrossRefGoogle Scholar
  2. 2.
    Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256zbMATHCrossRefGoogle Scholar
  3. 3.
    Lancaster P, Salkauskas K (1981) Surfaces generated by moving least square methods. Math Comput 37:141–158zbMATHCrossRefGoogle Scholar
  4. 4.
    Krongauz Y, Belytschko T (1997) Consistent pseudo-derivatives in meshless methods. Comput Methods Appl Mech Eng 146:371–386zbMATHCrossRefGoogle Scholar
  5. 5.
    Liu WK, Jun S, Zhang Y (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20:1081–1106zbMATHCrossRefGoogle Scholar
  6. 6.
    Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38:1655–1679zbMATHCrossRefGoogle Scholar
  7. 7.
    Liu WK, Li S, Belytschko T (1997) Moving least square reproducing kernel method (I) Methodology and convergence. Comput Methods Appl Mech Eng 143:113–154zbMATHCrossRefGoogle Scholar
  8. 8.
    Li S, Liu WK (2002) Meshfree particle methods and their applications. Appl Mech Rev 54:1–34CrossRefGoogle Scholar
  9. 9.
    Oñate E, Idelsohn S, Zienkiewicz OC, Taylor RL, Sacco C (1996) A stabilized finite point method of analysis of fluid mechanics problems. Comput Methods Appl Mech Eng 139:315–346zbMATHCrossRefGoogle Scholar
  10. 10.
    Aluru NR (2000) A point collocation method based on reproducing kernel approximations. Int J Numer Methods Eng 47:1083–1121zbMATHCrossRefGoogle Scholar
  11. 11.
    Kim DW, Kim Y-S (2003) Point collocation methods using the fast moving least square reproducing kernel approximation. Int J Numer Methods Eng 56:1445–1464zbMATHCrossRefGoogle Scholar
  12. 12.
    Lee S-H, Yoon Y-C (2004) Meshfree point collocation method for elasticity and crack problem. Int J Numer Methods Eng 61(1):22–48zbMATHCrossRefGoogle Scholar
  13. 13.
    Kim DW, Liu WK (2006) Maximum principle and convergence analysis for the meshfree point collocation method. SIAM J Numer Anal 44(2):515–539zbMATHCrossRefGoogle Scholar
  14. 14.
    Kim DW, Yoon Y-C, Liu WK, Belytschko T (2007) Extrinsic meshfree approximation using asymptotic expansion for interfacial discontinuity of derivative. J Comput Phys 221:370–394zbMATHCrossRefGoogle Scholar
  15. 15.
    Huerta A, Vidal Y, Villon P (2004) Pseudo-divergence-free element free Galerkin method for incompressible fluid flow. Comput Methods Appl Mech Eng 193:1119-1136zbMATHCrossRefGoogle Scholar
  16. 16.
    Fleming M, Chu YA, Moran B, Belytschko T (1997) Enriched element-free Galerkin methods for crack tip fields. Int J Numer Methods Eng 40:1483-1504CrossRefGoogle Scholar
  17. 17.
    Belytschko T, Fleming M (1999) Smoothing, enrichment and contact in the element-free Galerkin method. Comput Struct 71:173–195CrossRefGoogle Scholar
  18. 18.
    Krongauz Y, Belytschko T (1998) EFG approximation with discontinuous derivatives. Int J Numer Methods Eng 41: 1215–1233zbMATHCrossRefGoogle Scholar
  19. 19.
    Cordes LW, Moran B (1996) Treatment of material discontinuity in the Element-Free Galerkin method. Comput Methods Appl Mech Eng 139:75–89zbMATHCrossRefGoogle Scholar
  20. 20.
    Ventura G, Xu JX, Belytschko TA (2002) vector level set method and new discontinuity approximations for crack growth by EFG. Int J Numer Methods Eng 54:923–944zbMATHCrossRefGoogle Scholar
  21. 21.
    Li S, Liu WK (1998) Synchronized reproducing kernel interpolation via multiple wavelet expansion. Comput Mech 21: 28–47zbMATHCrossRefGoogle Scholar
  22. 22.
    Li S, Liu WK (1999) Reproducing kernel hierarchical partition of unity, part I-formulation and theory. Int J Numer Methods Eng 45:251–288zbMATHCrossRefGoogle Scholar
  23. 23.
    Li S, Liu WK (1999) Reproducing kernel hierarchical partition of unity, part II-application. Int J Numer Methods Eng 45:289–317CrossRefGoogle Scholar
  24. 24.
    Gibou F, Fedkiw RP, Cheng L-T, Kang M (2002) Second order accurate symmetric discretization of the Poisson equation on irregular domains. J Comput Phys 176:205–227zbMATHCrossRefGoogle Scholar
  25. 25.
    Liu X-D, Fedkiw RP, Kang M (2000) A boundary condition capturing method for Poisson’s equation on irregular domains. J Comput Phys 160:151–178zbMATHCrossRefGoogle Scholar
  26. 26.
    Li Z (1998) A fast iterative algorithm for elliptic interface problems. SIAM J Numer Anal 35(1):230–254zbMATHCrossRefGoogle Scholar
  27. 27.
    Wiegmann A, Bube KP (2000) The explicit-jump immersed interface method: finite difference methods for PDEs with piecewise smooth solutions. SIAM J Numer Anal 37(3): 827–862zbMATHCrossRefGoogle Scholar
  28. 28.
    Krongauz Y, Belytschko TA (1997) Petrov-Galerkin diffuse element method (PG DEM) and its comparison to EFG. Comput Mech 19:327–333zbMATHCrossRefGoogle Scholar
  29. 29.
    Belytschko T, Krongauz Y, Fleming M, Krysl P (1996) Smoothing and accelerated computations in the element free Galerkin method. J Comput Appl Mech Eng 131:133–145zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Verlag 2007

Authors and Affiliations

  • Do Wan Kim
    • 1
  • Wing Kam Liu
    • 2
  • Young-Cheol Yoon
    • 3
  • Ted Belytschko
    • 2
  • Sang-Ho Lee
    • 4
  1. 1.Department of Applied MathematicsHanyang UniversityAnsanRepublic of Korea
  2. 2.Department of Mechanical EngineeringNorthwestern UniversityEvanstonUSA
  3. 3.Department of Civil EngineeringSchool of Industrial TechnologySeoulRepublic of Korea
  4. 4.School of Civil and Environmental EngineeringYonsei UniversitySeoulRepublic of Korea

Personalised recommendations