Advertisement

Computational Mechanics

, Volume 40, Issue 3, pp 473–495 | Cite as

A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics

  • Timon Rabczuk
  • Stéphane Bordas
  • Goangseup Zi
Original Paper

Abstract

This paper proposes a three-dimensional meshfree method for arbitrary crack initiation and propagation that ensures crack path continuity for non-linear material models and cohesive laws. The method is based on a local partition of unity. An extrinsic enrichment of the meshfree shape functions is used with discontinuous and near-front branch functions to close the crack front and improve accuracy. The crack is hereby modeled as a jump in the displacement field. The initiation and propagation of a crack is determined by the loss of hyperbolicity or the loss of material stability criterion. The method is applied to several static, quasi-static and dynamic crack problems. The numerical results very precisely replicate available experimental and analytical results.

Keywords

Extended element-free Galerkin method (XEFG) Three-dimensional cracks Cohesive forces Static and dynamic fracture Extrinsic partition of unity enrichment Non-linear fracture mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alonso A, Valli A (1997) A domain decomposition approach for heterogenous time-harmonic maxwell equations. Comput Methods Appl Mech Eng 143:97–112zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alonso A, Valli A (1999) An optimal domain decomposition preconditioner for low-frequency maxwell equations. Math Comput 68:607–631zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Areias PMA, Belytschko T (2005) Analysis of three-dimensional crack initiation and propagation using the extended finite element method. Int J Numer Methods Eng 63:760–788zbMATHCrossRefGoogle Scholar
  4. 4.
    Arrea M, Ingraffea AR (1982) Mixed-mode crack propagation in mortar and concrete. Technical Report 81-13, Department of Structural Engineering Cornell University IthakaGoogle Scholar
  5. 5.
    Beck R, Hiptmair R, Hoppe RHW, Wohlmuth B (2000) Residual based a posteriori error estimators for eddy current computation. Math Model Numer Anal 34:159–182zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bellec J, Dolbow JE (2003) A note on enrichment functions for modelling crack nucleation. Commun Numer Methods Eng 19:921–932zbMATHCrossRefGoogle Scholar
  7. 7.
    Belytschko T, Chen H, Xu J, Zi G (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Methods Eng 58(12):1873–1905zbMATHCrossRefGoogle Scholar
  8. 8.
    Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Belytschko T, Moes N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. Int J Numer Methods Eng 50(4):993–1013zbMATHCrossRefGoogle Scholar
  10. 10.
    Bordas S (2003) Extended finite element and level set methods with applications to growth of cracks and biofilms. PhD Thesis, Northwestern UniversityGoogle Scholar
  11. 11.
    Bordas S, Moran B (2006) Extended finite element and level set method for damage tolerance assessment of complex structures: an object-oriented approach. EFM (in press)Google Scholar
  12. 12.
    Bordas S, Legay A (2005) Enriched finite element short course: class notes. In: The extended finite element method, a new approach to numerical analysis in mechanics: course notes. Organized by S. Bordas and A. Legay through the EPFL school of continuing education, Lausanne, SwitzerlandGoogle Scholar
  13. 13.
    Cervenka J (1994) Discrete crack modeling in concrete structures. PhD Thesis, University of ColoradoGoogle Scholar
  14. 14.
    Chevrier P, Klepaczko JR (1999) Spall fracture: Mechanical and microstructural aspects. Eng Fract Mech 63:273–294CrossRefGoogle Scholar
  15. 15.
    Chopp DL, Sukumar N (2003) Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method. Int J Eng Sci 41:845–869CrossRefMathSciNetGoogle Scholar
  16. 16.
    Daux C, Moes N, Dolbow J, Sukumar N, Belytschko T (2000) Arbitrary branched and intersection cracks with the extended finite element method. Int J Numer Methods Eng 48:1731–1760CrossRefGoogle Scholar
  17. 17.
    Demkovicz L, Vardapetyan L (1998) Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements. Comput Methods Appl Mech Eng 152:103–124CrossRefGoogle Scholar
  18. 18.
    Devloo P, Oden TJ, Pattani P (1988) An h-p adaptive finite element method for the numerical simulation of compressible flow. Comput Methods Appl Mech Eng 70(2):203–235zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Duflot M (2006) A meshless method with enriched weight functions for three-dimensional crack propagation. Int J Numer Methods Eng 65(12):1970–2006CrossRefGoogle Scholar
  20. 20.
    Galdos R (1997) A finite element technique to simulate the stable shape evolution of planar cracks with an application to a semi-elliptical surface crack in a bimaterial finite solid. Int J Numer Methods Eng 40:905–917zbMATHCrossRefGoogle Scholar
  21. 21.
    Gasser TC, Holzapfel GA (2005) Modeling 3D crack propagation in unreinforced concrete using PUFEM. Comput Methods Appl Mech Eng 194:2859–2896zbMATHCrossRefGoogle Scholar
  22. 22.
    Gravouil A, Moes N, Belytschko T (2002) Non-planar 3D crack growth by the extended finite element and level sets—Part II: Level set update. Int J Numer Methods Eng 53:2569–2586CrossRefGoogle Scholar
  23. 23.
    Hiptmair R (1998) Multigrid method for maxwell’s equations. SIAM J Numer Anal 36:204–225zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Houston P, Perugia H, Schötzau D (2005) Energy norm a posteriori error estimation for mixed discontinuous galerkin approximations of the maxwell operator. Comput Methods Appl Mech Eng 194:499–510zbMATHCrossRefGoogle Scholar
  25. 25.
    Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures. In: Proceedings of 7th International Symposium on BallisticsGoogle Scholar
  26. 26.
    Kalthoff JF, Winkler S (1987) Failure mode transition at high rates of shear loading. Int Conf Impact Load Dyn Behav Mater 1:185–195Google Scholar
  27. 27.
    Krysl P, Belytschko T (1999) The element free Galerkin method for dynamic propagation of arbitrary 3-D cracks. Int J Numer Methods Eng 44(6):767–800zbMATHCrossRefGoogle Scholar
  28. 28.
    Lemaitre J (1971) Evaluation of dissipation and damage in metal submitted to dynamic loading. In: Proceedings ICM 1Google Scholar
  29. 29.
    Li S, Simonson Bo C (2004) Meshfree simulation of ductile crack propagation. Int J Comput Methods Eng Sci Mech 6:1–19zbMATHCrossRefGoogle Scholar
  30. 30.
    Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle method for structural dynamics. Int J Numer Methods Eng 38:1665–1679MathSciNetGoogle Scholar
  31. 31.
    Liu WK, Li S, Belytschko T (1997) Moving least square reproducing kernel method. (I) methodology and convergence. Comput Methods Appl Mech Eng 143:113–154zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Liu Y, Murakami S, Kanagawa Y (1994) Mesh-dependence and stress singularity in finite element analysis of creep crack growth by continuum damage mechanics approach. Eur J Mech A/Solids 13:395–417zbMATHGoogle Scholar
  33. 33.
    Lo SH, Dong CY, Cheung YK (2005) Integral equation approach for 3d multiple crack problems. Eng Fract Mech 72:1830–1840CrossRefGoogle Scholar
  34. 34.
    Loehner R (2001) Applied CFD techniques: an introduction based on finite element methods. Wiley, New YorkGoogle Scholar
  35. 35.
    Martha LF, Wawrzynek PA, Ingraffea AR (1993) Arbitrary crack representation using solid modeling. Eng Comput 9:63–82CrossRefGoogle Scholar
  36. 36.
    Moes N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):133–150CrossRefGoogle Scholar
  37. 37.
    Moes N, Gravouil A, Belytschko T (2002) Non-planar 3-D crack growth by the extended finite element method and level sets, Part I: Mechanical model. Int J Numer Methods Eng 53(11):2549–2568zbMATHCrossRefGoogle Scholar
  38. 38.
    Monk P (1994) On the p- and hp-extension of nedelec’s curl-conforming elements. J Comput Appl Math 53:117–137zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Monk P (1998) A posteriori error indicators for maxwell’s equations. J Comput Appl Math 100:173–190zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Ogden RW (1984) Non-linear elastic deformations. Halsted, New YorkGoogle Scholar
  41. 41.
    Oliver J, Huespe AE, Snchez PJ (2006) A comparative study on finite elements for capturing strong discontinuities: E-fem vs. x-fem. Comput Methods Appl Mech Eng (in press)Google Scholar
  42. 42.
    Rabczuk T, Areias PMA, Belytschko T (2006) A simplified meshfree method for shear bands with cohesive surfaces. Int J Numer Methods Eng (submitted)Google Scholar
  43. 43.
    Rabczuk T, Belytschko T (2005) Adaptivity for structured meshfree particle methods in 2D and 3D. Int J Numer Methods Eng 63(11):1559–1582zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Rabczuk T, Belytschko T, Xiao SP (2004) Stable particle methods based on lagrangian kernels. Comput Methods Appl Mech Eng 193:1035–1063zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Rachowicz W, Demkovicz L (2000) An hp-adaptive finite element method for electromagnetics—Part I: Data structure and constrained approximation. Comput Methods Appl Mech Eng 187:307–335zbMATHCrossRefGoogle Scholar
  46. 46.
    Rachowicz W, Demkovicz L (2002) An hp-adaptive finite element method for electromagnetics-part ii: a 3d implementation. Int J Numer Methods Eng 53:147–180zbMATHCrossRefGoogle Scholar
  47. 47.
    Simkins DC Jr, Li S (2006) Meshfree simulations of ductile failure under thermal-mechanical loads. Comput Mech 3:235–249CrossRefGoogle Scholar
  48. 48.
    Sukumar N, Moran B, Black T, Belytschko T (1997) An element-free Galerkin method for three-dimensional fracture mechanics. Comput Mech 20:170–175zbMATHCrossRefGoogle Scholar
  49. 49.
    Teng X, Wierzbicki T, Hiermaier S, Rohr I (2005) Numerical prediction of fracture in the Taylor test. Int J Solids Struct 42:1919–1948Google Scholar
  50. 50.
    Vardapetyan L, Demkovicz L (1999) hp-adaptive finite elements in electromagnetics. Comput Methods Appl Mech Eng 169:331–344zbMATHCrossRefGoogle Scholar
  51. 51.
    Ventura G, Xu J, Belytschko T (2002) A vector level set method and new discontinuity approximations for crack growth by EFG. Int J Numer Methods Eng 54(6):923–944zbMATHCrossRefGoogle Scholar
  52. 52.
    Xu G, Bower FP, Ortiz M (1994) An analysis of non-planar crack growth under mixed mode loading. Int J Solids Struct 31:2167–2193zbMATHCrossRefGoogle Scholar
  53. 53.
    Xu G, Ortiz M (1993) A variational boundary integral method for the analysis of 3D cracks of arbitrary geometry modelled as continuous distributions of dislocation loops. Int J Numer Methods Eng 36:3675–3701zbMATHCrossRefGoogle Scholar
  54. 54.
    Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434zbMATHCrossRefGoogle Scholar
  55. 55.
    Zi G, Song J-H, Budyn E, Lee S-H, Belytschko T (2004) A method for growing multiple cracks without remeshing and its application to fatigue crack growth. Model Simul Mater Sci Eng 12(1):901–915CrossRefGoogle Scholar
  56. 56.
    Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part I: The recovery technique. Int J Numer Methods Eng 33:1331–1364zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Verlag 2007

Authors and Affiliations

  1. 1.Institute for Numerical MechanicsTechnical University of MunichGarching b. MunichGermany
  2. 2.Ecole Polytechnique Fédérale de Lausanne (EPFL) Laboratoire de structures et de mécanique des milieux continusLausanneSwitzerland
  3. 3.Department of Civil and Environmental EngineeringKorea UniversitySeoulSouth Korea

Personalised recommendations