Computational Mechanics

, Volume 41, Issue 2, pp 189–205 | Cite as

A contact searching algorithm including bounding volume trees applied to finite sliding mortar formulations

Original Paper

Abstract

This paper presents a new contact searching algorithm for large deformation mortar-based contact formulations. In this algorithm, a bounding volume hierarchy, defined in the context of a binary tree, is built for each contact surface based on the geometry of the surface. A global contact searching procedure based on these bounding volume trees is first performed to find all candidate contact element pairs, and then a local searching procedure is done to find all the mortar segments having contributions to the mortar integrals that define the contact formulation. The searching algorithm is shown to be very efficient and readily applicable to a variety of large sliding contact problems.

Keywords

Mortar methods Contact Contact searching Bounding volume hierarchy Finite elements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid Mech. Compu Methods Appl Mech Eng 193:601–629MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Puso MA, Laursen TA (2004) A mortar segment-to-segment frictional contact method for large deformations. Comput Methods Appl Mech Eng 193:4891–4913MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Yang B, Laursen TA, Meng XN (2005) Two dimensional mortar contact methods for large deformation frictional sliding. Int J Numer Methods Eng 62:1183-1225MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bernardi C, Maday Y, Patera AT (1992) A new nonconforming approach to domain decomposition: the mortar element method. In: Brezia H, Lions JL (eds) Nonlinear partial differential equations and their applications. Pitman and Wiley, pp 13–51Google Scholar
  5. 5.
    Belgacem FB, Maday Y (1994) A spectral element methodology tuned to parallel implementations. Compu Methods Appl Mech Eng 116:59–67MATHCrossRefGoogle Scholar
  6. 6.
    Belhachmi Z, Bernardi C (1994) Resolution of fourth order problems by the mortar element method. Comput Methods Appl Mech Eng 116:53–58MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Wohlmuth BI (2001) Discretization methods and iterative solvers based on domain decomposition. Springer, Berlin Heidelberg New York, (2001)MATHGoogle Scholar
  8. 8.
    El N-Abbasi, Bathe K-J. (2001) Stability and patch test performance of contact discretizations and a new solution algorithm. Compu and Struct 79:1473–1486CrossRefGoogle Scholar
  9. 9.
    McDevitt TW, Laursen TA (2000) A mortar-finite element formulation for frictional contact problems. Int J Numer Methods Eng 48:1525–1547MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fischer KA, Wriggers P. (2005) Frictionless 2d contact formulations for finite deformations based on the mortar method. Comput Mech 36:226–244MATHCrossRefGoogle Scholar
  11. 11.
    Zhong Z, Nilsson L (1989) A contact searching algorithm for general contact problems. Comput Struct 33:197–209MATHCrossRefGoogle Scholar
  12. 12.
    Oldenburg M, Nilsson L (1994) The position code algorithm for contact searching. Int J Numer Methods Eng 37:359– 386MATHCrossRefGoogle Scholar
  13. 13.
    Klosowski JK, Held M, Mitchell SB, Sowizral H, Zikan K (1998) Efficient collision detection using bounding volume hierarchies of k-dops. IEEE Trans Vis Comput Graph 4:21–37CrossRefGoogle Scholar
  14. 14.
    Kajiya JT, Kay TL (1986) Ray tracing complex scenes. ACM SIGGRAPH Comput Graph 20:269–278CrossRefGoogle Scholar
  15. 15.
    Goldsmith J, Salmon J (1987) Automatic creation of object hierarchies for ray tracing. IEEE Comput Graph Appl 7:14–20CrossRefGoogle Scholar
  16. 16.
    Klosowski JT, Held M, Mitchell JSB, Sowizral H, Zikan K (1998) Efficient collision detection using bounding volume hierarchies of k-DOPs. IEEE Trans Vis Comput Graph 4(1):21–36CrossRefGoogle Scholar
  17. 17.
    van den Bergen G (1997) Efficient collision detection of complex deformable models using AABB trees. J Graph Tools 2(4):1–13MATHGoogle Scholar
  18. 18.
    Mezger J, Kimmerle S, Etzmu βO (2000) Hierarchical techniques in collision detection for cloth animation. J WSCG 11(2):322–329Google Scholar
  19. 19.
    Gottschalk S, Lin MC, Manocha D (1996) OBBTree: ahierarchical structure for rapid interference detection. Comput Graph, 30(Annual Conference Series):171–180Google Scholar
  20. 20.
    Hubbard PM (1993) Interactive collision detection. In: IEEE symposium on research frontiers in virtual reality, IEEE. pp. 24–31Google Scholar
  21. 21.
    Garland M, Willmott AJ, Heckbert PS (2001) Hierarchical face clustering on polygonal surfaces. In: SI3D, pp. 49–58Google Scholar
  22. 22.
    Weghorst H, Hooper G, Greenberg D (1984) Improved computational methods for ray tracing. ACM Trans Graph 3:52–69CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Computational Mechanics Laboratory, Department of Civil and Environmental EngineeringDuke UniversityDurhamUSA

Personalised recommendations