Computational Mechanics

, Volume 38, Issue 4–5, pp 310–322 | Cite as

Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow

  • Y. Bazilevs
  • V. M. Calo
  • Y. Zhang
  • T. J. R. Hughes
Original Paper

Abstract

A NURBS (non-uniform rational B-splines)-based isogeometric fluid–structure interaction formulation, coupling incompressible fluids with non-linear elastic solids, and allowing for large structural displacements, is developed. This methodology, encompassing a very general class of applications, is applied to problems of arterial blood flow modeling and simulation. In addition, a set of procedures enabling the construction of analysis-suitable NURBS geometries directly from patient-specific imaging data is outlined. The approach is compared with representative benchmark problems, yielding very good results. Computation of a patient-specific abdominal aorta is also performed, giving qualitative agreement with computations by other researchers using similar models.

Keywords

Isogeometric analysis NURBS Fluid–structure interaction Vascular modeling Navier–Stokes equations Elastic arterial wall Mesh movement Blood flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bajaj C, Wu Q, Xu G (2003) Level set based volumetric anisotropic diffusion. ICES Report 03-10, UT AustinGoogle Scholar
  2. 2.
    Bazilevs Y, Beirao da Veiga L, Cottrell JA, Hughes TJR, Sangalli G (2006) Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math Models Methods Appl Sciences (in press), available as ICES Report 06-04, UT AustinGoogle Scholar
  3. 3.
    Bazilevs Y, Hughes TJR (2006) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids (In press), published onlineGoogle Scholar
  4. 4.
    Brooks AN, Hughes TJR (1982) Streamline upwind / Petrov– Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32:199–259MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Calo VM (2004) Residual-based multiscale turbulence modeling: finite volume simulation of bypass transistion. PhD thesis, Department of Civil and Environmental Engineering, Stanford UniversityGoogle Scholar
  6. 6.
    Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J Appl Mech 60:371–75MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cottrell JA, Reali A, Bazilevs Y, Hughes TJR (2005) Isogeometric analysis of structural vibrations. Comput Methods Appl Mech Eng (In press), available as ICES Report 05-27, UT AustinGoogle Scholar
  8. 8.
    Donea J, Giuliani S, Halleux JP (1982) An arbitrary Lagrangian–Eulerian finite element method for transient dynamics fluid– structure interactions. Comput Methods Appl Mech Eng 33:689–723MATHCrossRefGoogle Scholar
  9. 9.
    Farhat C, Geuzaine P (2004) Design and analysis of robust ALE time-integrators for the solution of unsteady flow problems on moving grids. Comput Methods Appl Mech Eng 193:4073–4095, 2004Google Scholar
  10. 10.
    Farhat C, Geuzaine P, Grandmont C (2001) The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids. J Comput Phys 174(2):669–694MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Farin GE (1995) NURBS Curves and Surfaces: from Projective Geometry to Practical Use. Peters AK, NatickGoogle Scholar
  12. 12.
    Fernandez MA, Moubachir M (2005) A Newton method using exact Jacobians for solving fluid–structure coupling. Comput Struct 83:127–142CrossRefGoogle Scholar
  13. 13.
    Fernandez MA, Salsac A-V (2006) Numerical investigation of the effects of the wall compliance on the wall shear stress distribution in abdominal aortic aneurisms (in preparation)Google Scholar
  14. 14.
    Figueroa A, Vignon-Clementel IE, Jansen KE, Hughes TJR, (2005) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Eng (in press)Google Scholar
  15. 15.
    Formaggia L, Gerbeau J-F, Nobile F, Quarteroni A (2001) On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comput Methods Appli Mech Eng 191:561–582MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Gerbeau J-F, Vidrascu M, Frey P (2005) Fluid-structure interaction in blood flows on geometries based on medical images. Comput Struct 83:155–165CrossRefGoogle Scholar
  17. 17.
    Goswami S, Dey TK, Bajaj CL (2006) Identifying planar and cylindrical regions of a shape by unstable manifold 11th ACM Solid and Physical Modeling Symposium (to appear)Google Scholar
  18. 18.
    Greenshields CJ, Weller HG (2005) A unified formulation for continuum mechanics applied to fluid–structure interaction in flexible tubes. Int J Numer Methods Eng 64:1575–1593MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Heywood JG, Rannacher R, Turek S (1996) Artificial boundaries and flux and pressure conditions for the incompressible Navier–stokes equations. Int J Numer Methods Fluids 22:325–352MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Holzapfel GA (2000) Nonlinear solid mechanics, a continuum approach for engineering. Wiley, ChichesterMATHGoogle Scholar
  21. 21.
    Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover, MineolaGoogle Scholar
  22. 22.
    Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian– Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Hughes TJR, Calo VM, Scovazzi G (2004). Variational and multiscale methods in turbulence. In: Gutkowski W, Kowalewski TA, (eds). Proceedings of the XXI international congress of theoretical and applied mechanics (IUTAM). Kluwer, NewyorkGoogle Scholar
  24. 24.
    Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Jansen KE, Whiting CH, Hulbert GM (1999) A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190:305–319CrossRefMathSciNetGoogle Scholar
  26. 26.
    Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73–94MATHCrossRefGoogle Scholar
  27. 27.
    Ju T, Losasso F, Schaefer S, Warren J (2002) Dual contouring of hermite data. In: Proceedings of SIGGRAPH, pp 339–346Google Scholar
  28. 28.
    Kuhl E, Hulshoff S, de Borst R (2003) An Arbitrary Lagrangian-Eulerian finite element approach for fluid–structure interaction phenomena. Int J Numer Methods Eng 57:117–142MATHCrossRefGoogle Scholar
  29. 29.
    Le Tallec P, Mouro J (2001) Fluid structure interaction with large structural displacements. Comput Methods Appl Mech Eng 190:3039–3068MATHCrossRefGoogle Scholar
  30. 30.
    Lorensen W, Cline H (1987) Marching cubes: a high resolution 3D surface construction algorithm. In: SIGGRAPH, pp 163–169Google Scholar
  31. 31.
    Nobile F (2001) Numerical approximation of fluid–structure interaction problems with application to haemodynamics PhD thesis, EPFLGoogle Scholar
  32. 32.
    Piegl L, Tiller W (1997) The NURBS Book (Monographs in Visual Communication). 2nd edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  33. 33.
    Rogers DF (2001) An Introduction to NURBS with Historical Perspective. Academic, San DiegoGoogle Scholar
  34. 34.
    Saad Y (1996) Iterative Methods for Sparse Linear Systems. PWS AlbanyGoogle Scholar
  35. 35.
    Salsac A-V, Fernandez MA, Chomaz J-M, Le Tallec P (2005) Effects of the flexibility of the arterial wall on the wall shear stress and wall tension in abdominal aortic aneurysms. In: Proceedings of 58th annual meeting of the division of fluid dynamics, Chicago November 2005Google Scholar
  36. 36.
    Simo JC, Hughes TJR (1998) Computational Inelasticity. Springer, Berlin Heidelberg New YorkMATHGoogle Scholar
  37. 37.
    Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70:58–63MATHCrossRefGoogle Scholar
  38. 38.
    Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193:2019–2032MATHCrossRefGoogle Scholar
  39. 39.
    Taylor CA, Hughes TJR, Zarins CK (1998) Finite element modeling of blood flow in arteries. Comput Methods Appl Mech Eng 158:155–196MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Tezduyar TE, Behr M, Liou J (1992) New strategy for finite element computations involving moving boundaries and interfaces. The deforming-spatial-domain/space–time procedure. I. the concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94:339–351MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Tezduyar TE, Behr M, Liou J (1992) New strategy for finite element computations involving moving boundaries and interfaces. The deforming-spatial-domain/space–time procedure. II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94:353–371MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the stabilized finite element methods – space–time formulations, iterative strategies and massively parallel implementations. In: New methods in transient analysis, PVP-vol 246/ AMD-vol 143. ASME, New York: pp 7–24Google Scholar
  44. 44.
    Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195:2002–2027MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Tomasi C, Madcuchi R (1998) Bilateral filtering for gray and color images. In: IEEE international conference on computer vision, pp 839Google Scholar
  46. 46.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2004) Influence of wall elasticity on image-based blood flow simulation. Jpn Soc Mech Eng J Ser A 70:1224–1231Google Scholar
  47. 47.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized space-time formulation. Comput Methods Appl Mech Eng 195:1885–1895MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech (in press)Google Scholar
  49. 49.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Influence of the wall elasticity in patient-specific hemodynamic simulations. Comput Fluids (in press), published onlineGoogle Scholar
  50. 50.
    Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2005) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng (in press)Google Scholar
  51. 51.
    White F (1974) Viscous Flow. McGraw-Hill, New YorkMATHGoogle Scholar
  52. 52.
    Yu Z, Bajaj C (2002) Image segementation using gradient vector diffusion and region merging. In: 16th international conference on pattern recognition, vol 2, pp 941–944Google Scholar
  53. 53.
    Yu Z, Bajaj C (2004) A fast and adaptive algorithm for image contrast enhancement. In: IEEE international conference on image processing (ICIP’04), vol 2, pp 1001–1004Google Scholar
  54. 54.
    Zhang LT, Gerstenberger A, Wang X, Liu WK (2004) Immersed finite element method. Comput Methods Appl Mech Eng 193:2051–2067MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Zhang Y, Bazilevs Y, Bajaj C, Hughes TJR (2006) Patient-specific vascular NURBS modeling for Isogeometric Analysis of blood flow. ICES Report 06–07Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Y. Bazilevs
    • 1
  • V. M. Calo
    • 1
  • Y. Zhang
    • 1
  • T. J. R. Hughes
    • 1
  1. 1.Institute for Computational Engineering and SciencesThe University of Texas at AustinAustinUSA

Personalised recommendations