Advertisement

Computational Mechanics

, Volume 39, Issue 6, pp 831–838 | Cite as

Identification of Chaos Representations of Elastic Properties of Random Media Using Experimental Vibration Tests

  • C. DesceliersEmail author
  • C. Soize
  • R. Ghanem
Original Paper

Abstract

This paper deals with the experimental identification of the probabilistic representation of a random field modelling the Young modulus of a nonhomogeneous isotropic elastic medium by experimental vibration tests. Experimental data are constituted of frequency response functions on a given frequency band and for a set of observed degrees of freedom on the boundary of specimens. The random field representation is based on the polynomial chaos decomposition. The coefficients of the polynomial chaos are identified setting an inverse problem and then in solving an optimization problem related to the maximum likelihood principle.

Keywords

Identification Elastic random medium Polynomial chaos 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angulo JM, Ruiz-Medina MD (1999) Multi-resolution approximation to the stochastic inverse problem. Adv Appl Probability 31(4):1039–1057zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Capilla JE, Gomez JJ, Sahuquillo A, Franssen HJWMH (2000) Stochastic inverse problems in groundwater modeling. Water Stud 7:295–304Google Scholar
  3. 3.
    Desceliers C, Ghanem R, Soize C (2004) Maximum likelihood estimation of stochastic chaos representations from experimental data (accepted for publication in IJNME)Google Scholar
  4. 4.
    Ghanem R, Spanos P (1991) Stochastic finite elements: a spectral approach. Springer, Berlin Heidelberg New YorkzbMATHGoogle Scholar
  5. 5.
    Manolis GD, Bagtzoglou AC (1992) Numerical comparative study of wave propagation in inhomogeneous and random media. Comput Mech 10(6):397–413zbMATHCrossRefGoogle Scholar
  6. 6.
    Manolis GD, Shaw RP (1996) Boundary integral formulation for 2D and 3D thermal problems exhibiting a linearly varying stochastic conductivity. Comput Mech 17(6):406–417zbMATHGoogle Scholar
  7. 7.
    Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11:431–44zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Quintanilla J (1999) Microstructure and properties of random heterogeneous materials: a review of theoretical results. Polym Eng Sci 39(3):559–585CrossRefGoogle Scholar
  9. 9.
    Roberts AP, Garboczi EJ (2002) Elastic properties of model random three-dimensional open-cell solids. J Mech Phys Solids 50(1):33–55zbMATHCrossRefGoogle Scholar
  10. 10.
    Serfling RJ (1980) Approximation theorems of mathematical statistics. John Wiley, New YorkzbMATHGoogle Scholar
  11. 11.
    Shevtsov BM (1999) Backscattering and inverse problem in random media. J Math Phys 40(9):4359–4373zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Soize C (2006) Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators (in press)Google Scholar
  13. 13.
    Soize C, Ghanem R (2004) Physical systems with random uncertainties: chaos representations with arbitrary probability measure. SIAM J Sci Comput 26(2):395–410zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Spanos P, Ghanem R (1989) Stochastic finite element expansion for random media. J Eng Mech 115(5):1035–1053CrossRefGoogle Scholar
  15. 15.
    Tleubergenov MI (2001) An inverse problem for stochastic differential systems. Differential Equations 37(5):751–753zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Torquato S (2002) Random heterogeneous materials, microstructure and macroscopic properties. Springer, Berlin Heidelberg New YorkzbMATHGoogle Scholar
  17. 17.
    Wiener N (1938) The Homogeneous Chaos. Am J Math 60:897–936zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Laboratoire de mécaniqueUniversité de Marne la ValléeMarne la ValléeFrance
  2. 2.Department of Aerospace and Mechanical EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations