Advertisement

Computational Mechanics

, Volume 39, Issue 6, pp 815–830 | Cite as

Numerical Homogenization Techniques Applied to Growth and Remodelling Phenomena

  • T. Ebinger
  • S. Diebels
  • H. Steeb
Original Paper

Abstract

Materials with inherent microstructures like granular media, foams or spongy bones often show a complex constitutive behaviour on the macroscale while the microscopic constitutive equations may be formulated in a simple fashion. Applying homogenization procedures allows to transfer the information from the microlevel to the macrolevel.

In the present contribution the porous structure of hard biological tissues, i.e. of spongy bones, is investigated. On the macroscale the approach is embedded into an extended continuum mechanical setting in order to capture size effects. The constitutive equations are formulated on the microscopic level taking into account growth and reorientation of the microstructural elements. By application of a strain-driven numerical homogenization procedure the macroscopic stress response is obtained.

Keywords

Boundary Value Problem Strain Tensor Couple Stress Principal Direction Thickness Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aşkar A (1986) Lattice dynamical foundations of continuum theories. World Scientific Publication, SingaporeGoogle Scholar
  2. 2.
    Aşkar A, Çakmak A (1968) A structural model of a micropolar continuum. Int J Eng Sci 6:583–589CrossRefzbMATHGoogle Scholar
  3. 3.
    Adachi T, Tomita Y, Tanaka M (1999) Three-dimensional lattice continuum model of cancellous bone for structural and remodeling simulation. JSME Int J 42(3):470–480Google Scholar
  4. 4.
    Adachi T, Tsubota K, Tomita Y, Hollister SJ (2001) Trabecular surface remodeling simulation for cancellous bone using microstructural voxel finite element models. ASME J Biomech Eng 123: 403–409CrossRefGoogle Scholar
  5. 5.
    Bardet J, Vardoulakis I (2001) The asymetry of stress in granular media. Int J Solids Struct 38:353–367zbMATHCrossRefGoogle Scholar
  6. 6.
    Carter D, Beaupre G (2001) Skeletal Function and Form: mechanobiology of skeletal development, aging and regeneration. Cambridge University Press, CambridgeGoogle Scholar
  7. 7.
    Cosserat E, Cosserat F (1909) Théorie des corps déformables. A. Hermann et Fils, ParisGoogle Scholar
  8. 8.
    Cowin S, Hegedus D (1976) Bone remodeling I: Theory of adaptive elasticity. J Elasticity 6:313–326zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Diebels S, Ehlers W (2001). Homogenization method for granular assemblies. In: Wall W, Bletzinger K-U, Schweizerhof K (eds). Proceedings of trends in computational structural Mechanics. CIMNE, Barcelona, Spain, pp. 79–88Google Scholar
  10. 10.
    Diebels S, Steeb H (2002) The size effect in foams and its theoretical and numerical investigation. In: Proceedings of the Royal Society London A, vol 458, pp 2869–2883Google Scholar
  11. 11.
    Diebels S, Steeb H (2003) Stress and couple stress in foams. Comp Math Sci 28:714–722CrossRefGoogle Scholar
  12. 12.
    Ebinger T, Steeb H, Diebels S (2004) Modeling macroscopic extended continua with the aid of numerical homogenization schemes. Comp Math Sci 32:337–347CrossRefGoogle Scholar
  13. 13.
    Ebinger T, Steeb H, Diebels S (2005) Modeling and homogenization of foams. Comp Assisted Mech Eng Sci 12:49–63Google Scholar
  14. 14.
    Ehlers W, Ramm E, Diebels S, D’Addetta GA (2003) From particle ensembles to Cosserat continua: Homogenization of contact forces towards stresses and couple stresses. Int J Solids Struct 40: 6681–6702zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Eringen C (1999) Microcontinuum Field Theories, vol I, Foundations and solids. Springer, Berlin Heidelberg New YorkGoogle Scholar
  16. 16.
    Feyel F, Chaboche J (2000) FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fiber SiC/Ti composite materials. Comp Meth Appl Mech Eng 183:309–330zbMATHCrossRefGoogle Scholar
  17. 17.
    Forest S (1998) Mechanics of generalized continua: construction by homogenization. J Phys IV:39–48Google Scholar
  18. 18.
    Forest S, Sab K (1998) Cosserat overall modeling of heterogeneous materials. Mech Res Commun 25:449–454zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Geers M, Kouznetsova V, Brekelmans W (2003) Multi-scale first-order and second-order computational homogenization of microstructures towards continua. Int J Multiscale Comput Eng (in press)Google Scholar
  20. 20.
    Gibson L, Ashby M (1997) Cellular solids. Structure and properties. Cambridge solid state science series. Cambridge University Press, CambridgeGoogle Scholar
  21. 21.
    Goldstein SA (1987) The mechanical properties of trabecular bone: dependence on anatomical location and function. J Biomech 20:1055–1061CrossRefGoogle Scholar
  22. 22.
    Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA (1994) The relationship between the structural and mechanical properties of trabecular bone. J Biomech 27:375–389CrossRefGoogle Scholar
  23. 23.
    Günther W (1958) Zur Statik und Kinematik des Cosseratschen Kontinuums. Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft 10:195–213zbMATHGoogle Scholar
  24. 24.
    Hashin Z (1983) Analysis of composite materials – a survey. J Appl Mech 50:481–505zbMATHCrossRefGoogle Scholar
  25. 25.
    Hohe J, Becker W (2001) An energetic homogenisation procedure for the elastic properties of general cellular sandwich cores. Composites: Part B 32:185–197CrossRefGoogle Scholar
  26. 26.
    Hollister SJ, Fyrhie DP, Jepsen KJ, Goldstein SA (1991) Application of homogenization theory to the study of trabecular bone mechanics. J Biomech 24:825–839CrossRefGoogle Scholar
  27. 27.
    Huet C (1997) An integrated micromechanics and statistical continuum thermodynamics approach for studying the fracture behaviour of microcracked heterogeneous materials with delayed response. Eng Fracture Mech 58:459–556CrossRefGoogle Scholar
  28. 28.
    Huiskes R, Ruimerman R, van Lenthe G, Janssen J (2000) Effects of mechanical forces on maintenance and adaption of form in trabecular bone. Nature 405:704–706CrossRefGoogle Scholar
  29. 29.
    Huiskes R, Weinans H, Dalstra M (1989) Adaptive bone remodeling and biomechanical design considerations for noncemented total hip arthroplasty. Orthopedics 12:1255–1267Google Scholar
  30. 30.
    Kouznetsova V, Brekelmans W, Baaijens F (2001) An approach to micro-macro modeling of heterogeneous materials. Comp Mech 37–48Google Scholar
  31. 31.
    Kuhl E (2004) Theory and numerics of open system continuum thermodynamics – spatial and material settings. Habilitation-thesis, Chair of Applied Mechanics, Technical University of KaiserslauternGoogle Scholar
  32. 32.
    Kuhl E, Steinmann P (2003) Theory and numerics of geometrically non-linear open system mechanics. Int J Numer Meth Eng 58:1593–1615zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Lakes R (1995). Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. In: Mühlhaus H (eds). Continuum methods for materials with microstructures. Wiley, Chichester, pp. 1–25Google Scholar
  34. 34.
    van Lenthe GH, Willems MMM, Verdonschot N, de Waal Malefijt MC, Huiskes R (2002) Stemmed femoral knee prostheses. Acta Orthop Scand 73:630–637CrossRefGoogle Scholar
  35. 35.
    Mullender M, Huiskes R (1995) Proposal for the regulatory mechanism of Wolff’s law. J Orthop Res 13:503–512CrossRefGoogle Scholar
  36. 36.
    Nackenhorst U (1997) Numerical simulation of stress stimulated bone remodeling. Technische Mechanik 17:31–40Google Scholar
  37. 37.
    Nauenberg T, Bouxsein M, Mikić B, Carter D (1993) Using clinical data to improve computational bone remodeling theory. Trans Orthop Res Soc 18:123Google Scholar
  38. 38.
    Nemat-Nasser S, Hori M (1993) Micromechanics. North-Holland, AmsterdamGoogle Scholar
  39. 39.
    Nowacki W (1986) Thermoelasticity. Pergamon Press, OxfordzbMATHGoogle Scholar
  40. 40.
    Onck P, Andrews E, Gibson L (2001) Size effects in ductile cellular solids. Part I: modeling. Int J Mech Sci 43:681–699zbMATHCrossRefGoogle Scholar
  41. 41.
    Papka S, Kyriakides S (1998) Experiments and full-scale numerical simulations of in-plane crushing of a honeycomb. Acta Mater 46:2765–2776CrossRefGoogle Scholar
  42. 42.
    Pettermann HE, Reiter TJ, Rammerstorfer FG (1997) Computational simulation of internal bone remodeling. Arch Comput Methods Eng 4:295–323Google Scholar
  43. 43.
    Pistoia W, van Rietbergen B, Laib A, Rüegsegger P (2001) High-resolution three-dimensional-pqct images can be an adequate basis for in vivo μfe analysis of bone. ASME J Biomech Eng 123:176–183CrossRefGoogle Scholar
  44. 44.
    Roux W (1881) Der Kampf der Teile im Organismus. Engelmann, LeipzigGoogle Scholar
  45. 45.
    Ruimerman R, Hilbers P, van Rietbergen B, Huiskes R (2005) A theoretical framework for strain-related trabecular bone maintenance and adaptation. J Biomech 38:931–941CrossRefGoogle Scholar
  46. 46.
    Sanchez-Palencia E (1980) Non-homogeneous meida and vibration theory. Springer, Berlin Heidelberg New YorkGoogle Scholar
  47. 47.
    Schaefer H (1967) Das Cosserat-Kontinuum. Z Angew Math Mech 47:485–498zbMATHGoogle Scholar
  48. 48.
    Steeb H, Ebinger T, Diebels S (2005) Microscopically motivated model describing growth and remodeling of spongy bones. In: Ehlers W (ed) Proceedings of 1st GAMM symposium on continuum biomechanics, 24 - 26 November 2004, Freudenstadt- Lauterbad, Glückauf, EssenGoogle Scholar
  49. 49.
    Warren W, Byskov E (2002) Three-field symmetry restrictions on two-dimenional micropolar materials. Eur J Mech A/Solids 21:779–792zbMATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Weinans H, Huiskes R, Grootenboer HJ (1992) Effects of material properties of femoral hip components on bone remodeling. J Orthop Res 10:845–853CrossRefGoogle Scholar
  51. 51.
    Wolff J, (1892) Das Gesetz der Transformation der Knochen. Hirschwald Verlag, BerlinGoogle Scholar
  52. 52.
    Zohdi T, Wriggers P (2005) Introduction to computational micromechanics. Lecture Notes in Applied and Computational Mechanics. Springer, Berlin Heidelberg New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Lehrstuhl für Technische MechanikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations