Computational Mechanics

, Volume 39, Issue 6, pp 743–760

A Meshfree Method based on the Local Partition of Unity for Cohesive Cracks

Original Paper

Abstract

We will present a meshfree method based on the local partition of unity for cohesive cracks. The cracks are described by a jump in the displacement field for particles whose domain of influence is cut by the crack. Particles with partially cut domain of influence are enriched with branch functions. Crack propagation is governed by the material stability condition. Due to the smoothness and higher order continuity, the method is very accurate which is demonstrated for several quasi static and dynamic crack propagation examples.

Keywords

Extended element-gree Galerkin method (XEFG) Cracks Cohesive models Dynamic fracture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Areias PMA, Belytschko T (2005) Analysis of three-dimensional crack initiation and propagation using the extended finite element method. Comput MechGoogle Scholar
  2. 2.
    Areias PMA, Song JH, Belytschko T (2006) Analysis of fracture in thin shells by overlapping paired elements (in press)Google Scholar
  3. 3.
    Armero F, Garikipati K (1996) An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids. Int J Solids Struct 33(20–22):2863–2885CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Arrea M, Ingraffea AR (1982) Mixed-mode crack propagation in mortar and concrete. Technical Report 81-13, Department of Structural Engineering, Cornell University IthakaGoogle Scholar
  5. 5.
    Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5):601–620CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Belytschko T, Chen H, Xu J, Zi G (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Methods Eng 58(12):1873–1905CrossRefMATHGoogle Scholar
  7. 7.
    Belytschko T, Fish J, Englemann B (1988) A finite element method with embedded localization zones. Comput Methods Appl Mech Eng 70:59–89CrossRefMATHGoogle Scholar
  8. 8.
    Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: An overview and recent developments. Comput Methods Appl Mech Eng 139:3–47CrossRefMATHGoogle Scholar
  9. 9.
    Belytschko T, Lu YY (1995) Element-free galerkin methods for static and dynamic fracture. Int J Solids Struct 32:2547–2570CrossRefMATHGoogle Scholar
  10. 10.
    Belytschko T, Lu YY, Gu L (1994) Element-free galerkin methods. Int J Numer Methods Eng 37:229–256CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Belytschko T, Lu YY, Gu L (1995) Crack propagation by element-free galerkin methods. Eng Fracture Mech 51(2):295–315CrossRefGoogle Scholar
  12. 12.
    Belytschko T, Moes N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. Int J Numer Methods Eng 50(4):993–1013CrossRefMATHGoogle Scholar
  13. 13.
    Belytschko T, Rabczuk T, Samaniego E, Areias PMA (2006) Two- and three dimensional modelling of shear bands using a meshfree method with cohesive surfaces. Int J Numer Methods Eng (in press)Google Scholar
  14. 14.
    Belytschko T, Tabbara M (1996) Dynamic fracture using element-free galerkin methods. Int J Numer Methods Eng 39(6):923–938CrossRefMATHGoogle Scholar
  15. 15.
    Bocca P, Carpinteri A, Valente S (1991) Mixed model fracture of concrete. Int J Solids Struct 33:2899–2938Google Scholar
  16. 16.
    Bocca P, Carpintieri A, Valente S (1990) Size effect in the mixed mode crack propagation: softening and snap-back analysis. Eng Fracture Mech 35:159–170CrossRefGoogle Scholar
  17. 17.
    Camacho GT, Ortiz M (1996) Computational modeling of impact damage in brittle materials. Int J Solids and Struct 33:2899–2938CrossRefMATHGoogle Scholar
  18. 18.
    Chessa J, Wang H, Belytschko T (2003) On the construction of blending elements for local partition of unity enriched finite elements. Int J Numer Methods Eng 57(7):1015–1038CrossRefMATHGoogle Scholar
  19. 19.
    Daux C, Moes N, Dolbow J, Sukumar N, Belytschko T (2000) Arbitrary branched and intersection cracks with the extended finite element method. Int J Numer Methods Eng 48:1731–1760CrossRefGoogle Scholar
  20. 20.
    Falk ML, Needleman A, Rice JR (2001) A critical evaluation of cohesive zone models of dynamic fracture. J Phys IV 11(PR5):43–50Google Scholar
  21. 21.
    Fineberg J, Sharon E, Cohen G (2003) Crack front waves in dynamic fracture. Int J Fracture 121(1–2):55–69CrossRefGoogle Scholar
  22. 22.
    Gravouil A, Moes N, Belytschko T (2002) Non-planar 3D crack growth by the extended finite element and level sets – part ii: Level set update. Int J Numer Methods Eng 53:2569–2586CrossRefGoogle Scholar
  23. 23.
    Gummalla RR (1999) Effect of material and geometric parameters on deformations of a dynamically loaded prenotched plate. Master’s Thesis, Virginia Polytechnical Institute and State UniversityGoogle Scholar
  24. 24.
    Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures. In: Proceedings of the 7th international Symposium on BallisticsGoogle Scholar
  25. 25.
    Kalthoff JF, Winkler S (1987) Failure mode transition at high rates of shear loading. Int Conf Impact Loading Dyn Behav Mater 1:185–195Google Scholar
  26. 26.
    Krysl P, Belytschko T (1999) The element free galerkin method for dynamic propagation of arbitrary 3-D cracks. Int J Numer Methods Eng 44(6):767–800CrossRefMATHGoogle Scholar
  27. 27.
    Laborde P, Pommier J, Renard Y, Solau M (2005) Higher-order extended finite element method for cracked domains. Int J Numer Methods Eng 64(3):354–381CrossRefMATHGoogle Scholar
  28. 28.
    Lemaitre J (1971) Evaluation of dissipation and damage in metal submitted to dynamic loading. Proceedings ICM 1Google Scholar
  29. 29.
    Lu YY, Belytschko T, Tabbara M (1995) Element-free galerkin method for wave-propagation and dynamic fracture. Comput Methods Appl Mech Eng 126(1–2):131–153CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Melenk JM, Babuska I (1996) The partition of unity finite element method: Basic theory and applications. Comput Methods Appl Mech Eng 139:289–314CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Moes N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):133–150CrossRefGoogle Scholar
  32. 32.
    Moes N, Gravouil A, Belytschko T (2002) Non-planar 3-D crack growth by the extended finite element method and level sets, parti: mechanical model. Int J Numer Methods Eng 53(11):2549–2568CrossRefMATHGoogle Scholar
  33. 33.
    Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44:1267–1282CrossRefMATHGoogle Scholar
  34. 34.
    Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng 61(13):2316–2343CrossRefMATHGoogle Scholar
  35. 35.
    Rabczuk T, Belytschko T (2005) Adaptivity for structured meshfree particle methods in 2D and 3D. Int J Numer Methods Eng 63(11):1559–1582CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Ravi-Chandar K (1998) Dynamic fracture of nominally brittle materials. Int J Fracture 90(1–2):83–102CrossRefGoogle Scholar
  37. 37.
    Remmers JJC, de Borst R, Needleman A (2003) A cohesive segments method for the simulation of crack growth. Comput Mech 31:69–77CrossRefMATHGoogle Scholar
  38. 38.
    Saehn S. Technische Bruchmechanik, Vorlesungsmanuskript. Technische Universitaet Dresden, Institut fuer FestkoerpermechanikGoogle Scholar
  39. 39.
    Samaniego E, Oliver X, Huespe A (2003) Contributions to the continuum modelling of strong discontinuities in two-dimensional solids. PhD thesis, International Center for Numerical Methods in Engineering, Monograph CIMNE No. 72Google Scholar
  40. 40.
    Sharon E, Fineberg J (1996) Microbranching instability and the dynamic fracture of brittle materials. Phys Rev B 54(10):7128–7139CrossRefGoogle Scholar
  41. 41.
    Ventura G, Xu J, Belytschko (2002) A vector level set method and new discontinuity approximations for crack growth by efg. Int J Numer Methods Eng 54(6):923–944CrossRefMATHGoogle Scholar
  42. 42.
    Westergaard HM (1939) Bearing pressures and cracks. J Appl Mech 6:A49–A53Google Scholar
  43. 43.
    Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434CrossRefMATHGoogle Scholar
  44. 44.
    Zhou F, Molinari JF (2004) Dynamic crack propagation with cohesive elements: a methodolgy to address mesh dependence. Int J Numer Methods Eng 59(1):1–24CrossRefMATHGoogle Scholar
  45. 45.
    Zi G, Belytschko T (2003) New crack-tip elements for xfem and applications to cohesive cracks. Int J Numer Methods Eng 57(15):2221–2240CrossRefMATHGoogle Scholar
  46. 46.
    Zi G, Chen H, Xu J, Belytschko T (2005) The extended finite element method for dynamic fractures. Shock Vib 12(1):9–23Google Scholar
  47. 47.
    Zi G, Song J-H, Budyn E, Lee S-H, Belytschko T (2004) A method for grawing multiple cracks without remeshing and its application to fatigue crack growth. Model Simul Materials Sci Eng 12(1):901–915CrossRefGoogle Scholar

Copyright information

© Springer Verlag 2006

Authors and Affiliations

  1. 1.Institute for Numerical MechanicsTechnical University of MunichGarching b.MunichGermany
  2. 2.Department of Civil and Environmental EngineeringKorea UniversitySeoulKorea

Personalised recommendations